一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种材料热弯模具的制备方法与流程

2021-10-16 00:09:00 来源:中国专利 TAG:模具 材料 制备 制备方法


1.本发明涉及材料热弯模具的制备技术领域,尤其涉及一种材料热弯模具的制备方法。


背景技术:

2.玻璃曲面屏可以应用于手机行业、仪器仪表行业、汽车行业的产品上,特种晶体复杂曲面体应用在x射线聚焦领域,玻璃和特种晶体的复杂曲面需要高温加热在模具内加压成型,因此对热弯模具材料要求很高。热弯模具材料的性能要求包括:高温下保持高强度、高硬度、低热膨胀系数、高热导率、低挥发性、高材料稳定性、与玻璃和特种晶体的低化学反应活性。
3.复合材料是将两种或者两种以上的材料,采用各种方法加以优化组合,获得具有优异特性的新材料。我国在金属基复合材料的研究整体水平与实用化程度和先进国家相比还要落后,大多数处在试验研究阶段,实际应用较少。
4.一般用传统方法成型模具时,通常是先制备出复合材料,然后再通过机械加工或其他加工手段去处一部分材料而加工成成品零件。比如进行切割、抛光等一系列后处理工序,整个工艺过程非常耗时,而且加工成本很高。另外,这些传统方法不能够用来成型形状更复杂和尺寸精度要求较高的模具。所以,需要开发一个更有效、更经济的高技术模具成型工艺。


技术实现要素:

5.本发明提供了一种材料热弯模具的制备方法,采用sic/si复合材料,制造材料热弯模具,兼顾材料性能和制造成本的要求,满足热弯工艺的使用需求。
6.一种材料热弯模具的制备方法,包括:
7.将100份碳化硅粉和2~8份的有机聚合物粉按照重量百分比混合,根据模具数字模型设计图分层进行选择性激光烧结成型得到素坯,对将强化后的素坯渗硅烧结,得到模具。
8.更优的,碳化硅粒径为1~150微米。
9.更优的,有机聚合物包括尼龙、酚醛树脂、环氧树脂等。
10.更优的,选择性激光烧结成型步骤具体包括:将模具数字模型设计图导入成型系统,按照层厚0.1~0.15mm分层,形成模具二维截面信息。
11.更优的,用碳化硅和树脂混合粉进行铺粉,成型系统控制激光束根据截面信息的二维截面路径在粉层上进行选择性扫描,使扫描到的碳化硅和树脂混合粉末温度高于树脂熔点,颗粒熔化粘结在一起,生成一定厚度的实体薄片;一层烧结完后,将新一层碳化硅和树脂混合粉末平铺在已成型的薄片上,选择性扫描烧结,重复上述操作,最终得到三维多孔素坯。
12.更优的,将素坯在80~120摄氏度烘箱内进行强化处理。
13.更优的,渗硅烧结包括:将强化后的素坯放置到石墨平板上,在坯体上堆积硅粉,硅粉重量依据坯体孔隙度而定;然后将石墨板和坯体一起放入真空烧结炉中,关闭炉门,抽真空;在真空状态中,将温度升至硅熔点以上,硅熔化渗入多孔坯体中,冷却后获得复合材料模具。
14.更优的,烧结温度高于硅熔点100~300℃之间,保温时间根据坯体尺寸计算熔渗材料能够完全渗入坯体并分布均匀为准。
15.更优的,硅粉重量为加权系数*坯体孔隙率*模型体积*硅的密度。
16.更优的,模具清理后进行数控铣磨加工。
17.通过以上技术方案可知,本发明提出方案:采用高温熔渗的方法控制预先通过选择性激光烧结成型得到得多孔素坯的孔隙度来控制增强材料的在基体中的质量百分含量,进而控制复合材料的各项性能。坯体材料孔隙度的控制主要是通过碳化硅粒径以及树脂百分含量来实现的,这种方法简单易行,操作温度为室温,可以进行比较精确的控制。而本发明制备出的零件可以一次成型,并且是近无余量加工零件,这样有效地降低了生产成本。
附图说明
18.图1为本发明实施例手机曲面屏设计示意图;
19.图2为本发明实施例手机曲面屏设计示意图;
20.图3模型渗硅后微观组织为碳化硅和硅两相组成示意图;
21.图4为本发明方法加工流程示意图。
具体实施方式
22.本发明实施例提供了一种材料热弯模具的制备方法。
23.实施例一
24.一种材料热弯模具的制备方法,如图4所示,包括:
25.将100份碳化硅粉和2至8份的有机聚合物粉按照重量百分比混合,根据模具数字模型设计图分层进行选择性激光烧结成型得到素坯,对将强化后的素坯渗硅烧结,得到模具。
26.采用高温熔渗的方法控制预先通过选择性激光烧结成型得到得多孔素坯的孔隙度来控制增强材料的在基体中的质量百分含量,进而控制复合材料的各项性能。坯体材料孔隙度的控制主要是通过碳化硅粒径以及树脂百分含量来实现的,这种方法简单易行,操作温度为室温,可以进行比较精确的控制。而本发明制备出的零件可以一次成型,并且是近无余量加工零件,这样有效地降低了生产成本。
27.实施例二
28.一种材料热弯模具的制备方法,该方法包括:
29.1、设计:按照手机曲面屏的复杂曲面,设计热压上模和下模,形成零件数字模型和零件图。
30.本实施只是为了说明问题举例为手机曲面屏的模型加工,但是本方法并不限于手机曲面屏的模型加工,机械、电子、航空、航海、生物医学、武器、汽车和医疗等领域的设备的模型加工都可以使用本方法,工艺过程是一样的。
31.采用pro/e等cad建模软件设计出零件数字模型和零件图。
32.激光选区烧结成型先成型出满足设计图纸的碳化硅成型件,与传统成型方法相比,工艺更简单,碳化硅成型件精度高。
33.2、混料:采用100份60微米粒径碳化硅粉和6份树脂粉按照重量百分比球磨混合。
34.粉末粒径越小,最终得到的碳化硅件的致密度也越高,粒径为10至150微米的碳化硅粉末最容易在工作台上形成一层薄平的单层,得到的成型件表面质量良好,也有利于烧结过程。
35.有机聚合物粉含量的增加,碳化硅坯体的强度也越高。有机聚合物粉含量过高时,在进行后处理工艺时坯体容易产生裂纹、变形;若有机聚合物粉含量过低,又会使碳化硅坯体出现分层现象,影响其成型精度和力学性能。有机聚合物的作用是粘结。因此,选择合适的粘结剂及如何配比粘结剂和sic碳化硅粉末至关重要,100份碳化硅粉和2至8份的有机聚合物粉按照重量百分比混合是比较恰当的比例。
36.碳化硅粉和树脂粉混合的方法包括机械混合、溶剂沉淀和磁力搅拌等。
37.机械混合方法包括球磨混合,将按照比例称好的酚醛树脂和碳化硅粉末倒入球磨罐中,加入球磨珠,调整球磨机相应参数,设定转速及球磨时间为12个小时,确保粉末混合均匀,得到需要的酚醛树脂sic复合粉末。
38.3、选择性激光烧结成型:将零件数字模型导入,进行层厚0.1mm分层操作,将碳化硅材料和树脂混合粉装入料筒,进行铺粉,按照分层数据进行选择性激光逐层烧结,成型后将素坯小心取出,在烘箱内进行强化处理。
39.与其他传统成型工艺相比,制造周期短、成本低,操作简单,可以将结构复杂的产品直接烧结成件。
40.4、真空下渗硅烧结:将强化后的坯体放置到石墨平板上,在坯体上堆积si粉,硅粉重量与素坯重量比例为1:1,最高烧结温度1600℃,随炉冷却。
41.硅的熔点为1410℃,最高烧结温度一般设定在1500至1700℃之间。
42.硅粉重量为加权系数*坯体孔隙率*模型体积*硅的密度。加权系数的确定取决于渗硅烧结设备情况、工艺环境、坯体孔隙大小和复杂程度,包括真空度、加热区尺寸等,通过试验最终确定,在本实施例中加权系数为1.1。
43.坯体孔隙率、模型体积、硅的密度都可以通过测试手段获得,本实施例中最终确定的硅粉重量与素坯重量比例为1:1。
44.5、后处理:喷砂清理熔渗后的硅渣滓。
45.6、数控铣磨加工成型:将零件底面进行平面磨削,胶粘固定在金属平板上,再固定在铣磨机上,按照图纸,用铣磨头进行复杂曲面加工、定位槽加工。
46.7、测得材料密度为2.71~2.75g/cm3,弯曲强度为185~210mpa,断裂韧性为2.97mpam
1/2
。微观组织为碳化硅和硅两相组成,如图3所示。
47.实施例三
48.采用100份10微米粒径碳化硅粉和2份树脂粉按照重量百分比球磨混合。
49.其他步骤与实施例二相同。
50.实施例四
51.采用100份150微米粒径碳化硅粉和8份树脂粉按照重量百分比球磨混合。
52.其他步骤与实施例二相同。
53.将被硅粉包裹着的多孔坯体放入真空烧结炉中,在炉内真空度为小于0.01mpa的条件下,将温度升高至1700℃,保温1h后开始降温。当炉内温度冷却至室温后,取出样品,清理表面残留的硅颗粒,得到最终的碳化硅碳化硅制品。
54.原理:
55.工艺原理是先通过计算机软件设计出拟构建的三维实体模型,将文件转成选择性激光烧结格式进行分层切割处理,将一系列的二维截面信息传输到数控成型系统;将高于工作台的碳化硅复合粉末平铺在工作台上,形成一个很薄且平面的粉层;控制激光束根据截面的二维路径在粉层上进行选择性扫描,使扫描到的粉末温度高于熔点,颗粒熔化粘结在一起,生成一定厚度的实体薄片;一层烧结完后,将新一层粉末平铺在已成型的薄层上,进行新一轮的扫描烧结,重复上述操作,最终得到三维实体模型。
56.烧结成型后的碳化硅素坯致密度较低,强度不高,表面的粉末特别容易掉落,并有大量孔洞存在碳化硅素坯中。用硅粉包埋多孔坯体放入真空烧结炉中进行反应烧结,当炉内温度达到硅的熔点时,硅粉熔融变成液态硅具有一定的反应活性,游离硅渗入到碳化硅坯体的孔隙中与c反应生成二次碳化硅并将原生碳化硅粘结在一起,得到碳化硅碳化硅。提高了碳化硅的致密度,从而提高了材料的力学性能。
57.本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜