一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

氧化锗掺杂氧化锆陶瓷材料及其制备方法与流程

2021-09-15 01:29:00 来源:中国专利 TAG:氧化锆 陶瓷材料 掺杂 氧化 制备方法


1.本发明涉及氧化锆陶瓷材料技术领域,是一种氧化锗掺杂氧化锆陶瓷材料及其制备方法。


背景技术:

2.在口腔修复领域,氧化锆陶瓷因其优异的美学性能、机械性能、生物相容性受到广泛应用,相较于传统的金属烤瓷牙,氧化锆陶瓷避免了其金属带来的龈染等美观问题,其中,氧化锆,即3mol%钇稳定四方多晶氧化锆(简称3y

tzp),因其具有较高的断裂韧性和强度,广泛用于口腔修复中牙冠、固定桥、种植体基台以及种植体修复材料等。氧化锆存在3种晶型,在室温下为单斜相,1175℃时转变为四方相,2370℃至2680℃时,以立方相形式存在。当氧化锆陶瓷长期存活于口腔复杂(例如潮湿、酸碱性)环境中,其表面会自发的发生马氏体相变,即四方相(t)向单斜相(m)转变(t

m相变),并伴随着裂纹的产生,水分子通过裂纹渗透到材料内部,材料粗糙度增加、机械性能下降,最终导致修复体的破裂或者折断,这种现象被称为低温时效老化,极大地限制了氧化锆在牙科领域中的运用。
3.材料的机械性能、低温时效性等宏观性能均是由晶粒及晶界处的物理化学结构等微观结构决定的。晶粒尺寸会影响t

m相变,控制晶粒大小小于360nm,可有效阻止t

m相变,有利于提高抗低温时效性。晶界处的物理化学结构也是影响材料宏观性能的重要因素,杂质元素在晶界上的不均匀分布称为晶界偏析,晶界偏析主要受原子化合价、离子半径、烧结温度等因素影响。根据电荷守恒定律,低价阳离子(二价、三价阳离子)掺杂会引入氧空位,水分子沿晶界占据氧空位的,越容易发生低温老化。四价阳离子的掺入不会引入氧空位,四价阳离子因与主阳离子半径的差异、烧结温度的变化仍然会发生晶界偏析,可能有利于降低水与氧空位的结合从而改善低温时效老化,但这方面的机制尚不明确。
4.研究者们通过掺杂不同种类的稳定剂(ce
4
、si
4
、ge
4
、la
3
、al
3
、y
3
、fe
3
)研究其晶粒尺寸及晶界偏析现象对低温时效的影响,其中,大量研究证实ce

tzp的抗低温时效效果明显优于y

tzp,但氧化铈极大地降低了材料的机械性能。近年来,研究者们发现掺杂sio2的晶界偏析现象能有效延缓氧化锆的低温老化,这可能与偏析的硅离子阻碍了氢氧根离子或氧空位沿晶界的扩散有关。另外,研究报道,sio2的加入会使晶粒外形更加圆钝,有非晶的第二相产生,影响水诱导相变的成核,同时,降低晶界处应力,减少裂纹产生,有效延缓低温老化,并且sio2的加入不会降低材料的机械性能。geo2作为烧结助燃剂,能有效提高材料的致密性,同样作为掺杂剂掺杂进入氧化锆,以往关于geo2的研究普遍是geo2掺杂氧化锆对其高温超塑性行为和微观结构的影响,而对其力学性能及低温时效性的研究较少。锗与硅位于元素周期表同一族,其物理化学性质与硅相似,或许同样能有效抑制低温老化。另外,氧化锗呈现白色,具有良好的美学性能,可以用于前牙美学修复,例如微创贴面修复、部分冠修复等。


技术实现要素:

5.本发明提供了一种氧化锗掺杂氧化锆陶瓷材料及其制备方法,克服了上述现有技术之不足,其能有效解决现有的氧化锆存在抗低温时效老化性能差的问题。
6.本发明的技术方案之一是通过以下措施来实现的:一种氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为0.5mol%至2.0mol%的氧化锗进行混合,得到混合粉料,将质量比为4:3:3的混合粉料、研磨珠和无水乙醇在行星球磨仪中进行球磨,然后,经过过滤和干燥后,得到块状粉料;第二步,造粒:将块状粉料进行一次研磨和一次过筛后,向经过一次过筛后的粉料中加入聚乙烯醇水溶液进行二次研磨和二次过筛;第三步,干压成型和冷等静压:将经过二次过筛后的粉料依次经过干压成型和冷等静压后,得到陶瓷生坯;第四步,烧结:将陶瓷生坯经过烧结后,得到氧化锗掺杂氧化锆陶瓷材料。
7.下面是对上述发明技术方案之一的进一步优化或/和改进:
8.上述第一步中,向氧化锆中掺杂摩尔百分比为1.5mol%至2.0mol%的氧化锗进行混合后,得到混合粉料。
9.上述第一步中,研磨珠为1:1混合的直径为5mm和1mm氧化锆球磨珠,球磨速度为20hz/min,球磨时间为24h,过滤采用80目不锈钢筛网过滤,干燥时间为24h,干燥温度为80℃。
10.上述第二步中,一次研磨时间为每份20g块状粉体研磨15min,一次过筛为过60目不锈钢筛,得到筛下物;二次研磨时间为每份10g粉体研磨20min,二次过筛为过100目不锈钢筛,得到筛下物。
11.上述第二步中,向每克经过一次过筛后的粉料中加入30微升的质量浓度为5%的聚乙烯醇水溶液进行二次研磨和二次过筛。
12.上述第三步中,干压成型的压力为25mpa,加压时间为90s,冷等静压的压力为250mpa,保压时间为2min。
13.上述第四步中,烧结程序:首先,以3℃/min的升温速率升温至600℃,保温60min,排胶,然后,以3℃/min的升温速率由600℃升温至1450℃,保温120min,最后,以降温速率为10℃/h进行降温。
14.本发明的技术方案之二是通过以下措施来实现的:一种氧化锗掺杂氧化锆陶瓷材料的制备方法,按下述方法进行:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为0.5mol%至2.0mol%的氧化锗进行混合,得到混合粉料,将质量比为4:3:3的混合粉料、研磨珠和无水乙醇在行星球磨仪中进行球磨,然后,经过过滤和干燥后,得到块状粉料;第二步,造粒:将块状粉料进行一次研磨和一次过筛后,向经过一次过筛后的粉料中加入聚乙烯醇水溶液进行二次研磨和二次过筛;第三步,干压成型和冷等静压:将经过二次过筛后的粉料依次经过干压成型和冷等静压后,得到陶瓷生坯;第四步,烧结:将陶瓷生坯经过烧结后,得到氧化锗掺杂氧化锆陶瓷材料。
15.下面是对上述发明技术方案之二的进一步优化或/和改进:
16.上述第一步中,向氧化锆中掺杂摩尔百分比为1.5mol%至2.0mol%的氧化锗进行混合后,得到混合粉料。
17.上述第一步中,研磨珠为1:1混合的直径为5mm和1mm氧化锆球磨珠,球磨速度为
20hz/min,球磨时间为24h,过滤采用80目不锈钢筛网过滤,干燥时间为24h,干燥温度为80℃。
18.上述第二步中,一次研磨时间为每份20g块状粉体研磨15min,一次过筛为过60目不锈钢筛,得到筛下物;二次研磨时间为每份10g粉体研磨20min,二次过筛为过100目不锈钢筛,得到筛下物。
19.上述第二步中,向每克经过一次过筛后的粉料中加入30微升的质量浓度为5%的聚乙烯醇水溶液进行二次研磨和二次过筛。
20.上述第三步中,干压成型的压力为25mpa,加压时间为90s,冷等静压的压力为250mpa,保压时间为2min。
21.上述第四步中,烧结程序:首先,以3℃/min的升温速率升温至600℃,保温60min,排胶,然后,以3℃/min的升温速率由600℃升温至1450℃,保温120min,最后,以降温速率为10℃/h进行降温。
22.本发明氧化锗掺杂氧化锆陶瓷材料的优势在于:传统的氧化锆陶瓷材料因较高的强度和硬度,易造成对颌牙的磨损,且不利于切削成型,并且透光率较低,较少用于前牙贴面修复,同时,抗低温时效性能差。本发明利用了氧化锗优异的抗低温时效性能及美学性能,不仅提高了氧化锆陶瓷材料的抗低温时效性能,还改善了氧化锆陶瓷材料的美学性能,其适宜的强度和硬度可用于制作前牙贴面,拓宽了氧化锆陶瓷材料的临床应用。
附图说明
23.图1为本发明氧化锗掺杂氧化锆陶瓷材料进行低温时效老化处理前的xrd图。
24.图2为本发明氧化锗掺杂氧化锆陶瓷材料进行低温时效老化处理30h后的xrd图。
具体实施方式
25.本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。本发明中所提到各种化学试剂和化学用品如无特殊说明,均为现有技术中公知公用的化学试剂和化学用品;本发明中的百分数如没有特殊说明,均为质量百分数;本发明中的溶液若没有特殊说明,均为溶剂为水的水溶液,例如,盐酸溶液即为盐酸水溶液;本发明中的常温、室温一般指15℃到25℃的温度,一般定义为25℃。
26.下面结合实施例对本发明作进一步描述:
27.实施例1:该氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为0.5mol%至2.0mol%的氧化锗进行混合,得到混合粉料,将质量比为4:3:3的混合粉料、研磨珠和无水乙醇在行星球磨仪中进行球磨,然后,经过过滤和干燥后,得到块状粉料;第二步,造粒:将块状粉料进行一次研磨和一次过筛后,向经过一次过筛后的粉料中加入聚乙烯醇水溶液进行二次研磨和二次过筛;第三步,干压成型和冷等静压:将经过二次过筛后的粉料依次经过干压成型和冷等静压后,得到陶瓷生坯;第四步,烧结:将陶瓷生坯经过烧结后,得到氧化锗掺杂氧化锆陶瓷材料。
28.实施例2:作为上述实施例的优化,第一步中,向氧化锆中掺杂摩尔百分比为1.5mol%至2.0mol%的氧化锗进行混合后,得到混合粉料。
29.实施例3:作为上述实施例的优化,第一步中,研磨珠为1:1混合的直径为5mm和1mm
氧化锆球磨珠,球磨速度为20hz/min,球磨时间为24h,过滤采用80目不锈钢筛网过滤,干燥时间为24h,干燥温度为80℃。
30.实施例4:作为上述实施例的优化,第二步中,一次研磨时间为每份20g块状粉体研磨15min,一次过筛为过60目不锈钢筛,得到筛下物;二次研磨时间为每份10g粉体研磨20min,二次过筛为过100目不锈钢筛,得到筛下物。
31.实施例5:作为上述实施例的优化,第二步中,向每克经过一次过筛后的粉料中加入30微升的质量浓度为5%的聚乙烯醇水溶液进行二次研磨和二次过筛。
32.实施例6:作为上述实施例的优化,第三步中,干压成型的压力为25mpa,加压时间为90s,冷等静压的压力为250mpa,保压时间为2min。
33.实施例7:作为上述实施例的优化,第四步中,烧结程序:首先,以3℃/min的升温速率升温至600℃,保温60min,排胶,然后,以3℃/min的升温速率由600℃升温至1450℃,保温120min,最后,以降温速率为10℃/h进行降温。
34.实施例8:该氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为0.5mol%的氧化锗进行混合后,得到混合粉料,将质量比为4:3:3的混合粉料、研磨珠和无水乙醇在行星球磨仪中进行球磨,然后,经过过滤和干燥后,得到块状粉料,其中,研磨珠为1:1混合的直径为5mm和1mm氧化锆球磨珠,球磨速度为20hz/min,球磨时间为24h,过滤采用80目不锈钢筛网过滤,干燥时间为24h,干燥温度为80℃;第二步,造粒:将块状粉料进行一次研磨和一次过筛后,向每克经过一次过筛后的粉料中加入30微升的质量浓度为5%的聚乙烯醇水溶液进行二次研磨和二次过筛,其中,一次研磨时间为每份20g块状粉体研磨15min,一次过筛为过60目不锈钢筛,得到筛下物;二次研磨时间为每份10g粉体研磨20min,二次过筛为过100目不锈钢筛,得到筛下物;第三步,干压成型和冷等静压:将经过二次过筛后的粉料依次经过干压成型和冷等静压后,得到陶瓷生坯,其中,干压成型的压力为25mpa,加压时间为90s,冷等静压的压力为250mpa,保压时间为2min;第四步,烧结:将陶瓷生坯经过烧结后,得到氧化锗掺杂氧化锆陶瓷材料,其中,烧结程序:首先,以3℃/min的升温速率升温至600℃,保温60min,排胶,然后,以3℃/min的升温速率由600℃升温至1450℃,保温120min,最后,以降温速率为10℃/h进行降温;质量浓度为5%的聚乙烯醇水溶液的制备方法为:向一定质量的聚乙烯醇粉末中慢慢加入去离子水搅拌30min,然后,缓慢升温至100℃,保温4h后降至室温,在升温和降温的过程中,一直搅拌使聚乙烯醇完全溶解,防止形成团块。
35.本发明中,氧化锆为3mol%钇稳定四方多晶氧化锆(简称3y

tzp),氧化锆采用由日本tosoh森村商事株式会社提供的粒径为27nm或现有公知公用的氧化锆;氧化锗采用上海阿拉丁生化科技股份有限公司的粒径为75μm或现有公知公用的氧化锗。
36.实施例9:该氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为1.0mol%的氧化锗进行混合后,得到混合粉料,其余步骤均同实施例8。
37.实施例10:该氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向氧化锆中掺杂摩尔百分比为1.5mol%的氧化锗进行混合后,得到混合粉料,其余步骤均同实施例8。
38.实施例11:该氧化锗掺杂氧化锆陶瓷材料,按下述方法得到:第一步,湿法球磨:向
氧化锆中掺杂摩尔百分比为2.0mol%的氧化锗进行混合后,得到混合粉料,其余步骤均同实施例8。
39.对照例:按照实施例8的制备方法,其中,氧化锆中不掺杂氧化锗,其余步骤均相同。
40.以下是对本发明氧化锗掺杂氧化锆陶瓷材料机械性能(力学性能)和抗低温时效性能的考察。
41.试验方法:对本发明对照例和实施例8至实施例11的机械性能进行考察,机械性能(力学性能)包括密度(density)、晶粒尺寸(grain size)、三点弯曲强度(flexural strength)、维氏硬度(vickers hardness h
v
)和断裂韧性(indentation toughness k
if
)。密度使用阿基米德排水法进行测试;晶粒尺寸参照国际标准gb/t 6394,采用测截距法进行测量;三点弯曲强度:使用万能试验机对样品进行三点弯曲强度进行测试;维氏硬度使用维氏显微硬度测试仪进行测试;断裂韧性:同样通过使用维氏显微硬度测试仪进行测试,通过测量压痕对角线长度和裂纹扩展长度计算断裂韧性值。同时,对本发明对照例和实施例8至实施例11的抗低温时效性能进行考察,抗低温时效性能,是根据iso

6872标准,利用高压釜对样品进行水热处理:条件为134℃、0.2mpa,处理时间0、10、15、20、30h,利用x射线衍射仪(xrd)分析样品单斜相含量。
42.具体试验方法如下:
43.(1)抛光:所有试样逐级使用120目、240目、600目、800目、1200目、2000目、3000目、4000目、5000目碳化硅砂纸进行打磨,然后使用6μm、1μm粒度的金刚石悬浮液进行精细抛光,直到扫描电子显微镜没有观察到明显的划痕。
44.(2)烧结体的致密度:使用阿基米德排水法测试烧结体密度,将样品分组后(n=3)放入无水乙醇溶液、去离子水溶液中分别超声清洗5min,用干燥洁净的纱布去除材料表面的灰尘及水渍,然后放置于120℃电热鼓风干燥箱中进行烘干。待烘干至恒重后,用电子分析天平称重,记作干重(m1),精确到0.001g。然后将称量好的试样放入盛满蒸馏水的烧杯中,然后在水浴锅中持续加热,使蒸馏水沸腾6h,将煮沸后的样品放入电子分析天平的吊篮中,称得的重量记作浮重(m2)。再将试样从水中取出,用干燥洁净的纱布拭去样品表面水渍,使用电子分析天平上称量样品的重量,记作湿重(m3)。样品密度计算用公式:
[0045][0046]
其中,m1为样品干燥时的重量,m2为样品浸在水中受到浮力的重量,m3为样品饱含水在空气中的重量,ρ为氧化锆样品的密度。
[0047]
(3)陶瓷材料的微观形貌及晶粒尺寸:样品喷金处理后,采用扫描电子显微镜(sem)观察烧结体表面形貌和三点弯曲断面的断口形貌,分析样品的晶粒尺寸和断裂模式。其中对于样品表面形貌和晶粒尺寸分析的测试方法是:将试样表面抛光至镜面,在1250℃高温箱式炉中热腐蚀20min,升温速率为3℃/min,降温速率为10℃/h。试样喷金处理后,使用扫描电镜观察试样表面形貌。参照国际标准gb/t 6394,采用测截距法测量样品的晶粒尺寸。利用nano measurer 1.2.5软件统计样品晶粒尺寸,晶粒个数需超过1000,然后取平均值。
[0048]
(4)维氏硬度:使用维氏显微硬度测试仪在10kg载荷下保压10s来加载陶瓷试样,
然后直接读取测量试样的维氏硬度值,每个样品制备至少5个压痕以减少实验误差。
[0049]
(5)三点弯曲强度:使用万能试验机对样品进行三点弯曲加载法测试,通过x射线衍射仪对样品三点弯曲断面进行物相分析。参考iso 6872标准,将烧结后的样品磨削加工成标准尺寸,长、宽、高分别为36mm、3mm、4mm,然后进行抛光,抛光程序为:逐级使用120目、240目、600目、800目、1200目、2000目、3000目、4000目、5000目碳化硅砂纸进行打磨,然后使用用6μm、1μm粒度的金刚石悬浮液进行精细抛光。使用万能材料试验机测量,跨距为30mm,加载速度为0.5mm/min,计算公式如下:
[0050][0051]
式中,f是样品断裂时所收到的最大的载荷力(n),l为仪器量底座之间的跨距(30mm),b为样品宽度(mm),d为样品的厚度(mm),σ
t
为抗弯强度(mpa)。
[0052]
(6)断裂韧性:同样在测量之前,按照上述抛光方法对试样进行抛光,直到扫描电子显微镜观察到试样表面没有明显的裂纹和划痕,避免其他的裂纹和划痕影响压痕裂纹的扩展,同样通过使用维氏显微硬度测试仪在10kg载荷下加载陶瓷试样,然后通过测量压痕对角线长度和裂纹扩展长度计算断裂韧性值。为了保证实验的准确性,每个样品至少测量5个点。本研究采用的压痕法是一种测量陶瓷材料断裂韧性方法,原理是压痕周围会产生塑形形变,形变储存的残余应力诱导压痕四个角的周围出现微裂纹。
[0053]
计算公式如下:
[0054][0055]
其中,h
v
是维氏硬度计在该载荷下测量所得的维氏硬度值,e是氧化锆陶瓷材料的弹性模量(通常为210gpa),l是裂纹扩展长度,a为压痕对角线的一半,c为压痕中心与裂纹尖端之间的距离。对于本次实验获得的均为较小的压痕裂纹,且0.25≤(c

a)/a≤2.5时,可采用上述公式。
[0056]
(7)诱导低温时效老化:根据iso

6872标准,本研究利用高压釜对所有样品进行低温时效老化处理。首先将样品放入无水乙醇中超声清洗10min,以获得清洁表面避免影响检测结果,吹干表面,将试样放入高压釜内,高压釜中装有去离子水以模拟口腔内潮湿环境,然后将高压釜置于电热恒温鼓风干燥箱内进行实验,保持温度一直保持在134℃,压力为2bar,处理时间分别为0h、10h、15h、20h、30h,为减小误差,每种样品每个时间点重复3次。
[0057]
(8)物相分析:通过x射线衍射仪(xrd)对烧结体表面进行物相组成分析。扫描范围2θ为20
°
至80
°
,扫描速度为2
°
/min。实验条件:cu靶,管电压40kv,管电流40ma,λ=0.15418nm,扫描深度约为7.5μm。单斜相含量的计算公式参考garvie和nicholson等人提出的方程如下:
[0058][0059]
x
m
表示单斜相的相对含量,i
m
表示单斜相的峰面积,i
t
表示四方相的峰面积。使用jade软件对x射线衍射谱进行物相组成及单斜相含量分析。
[0060]
试验结果:机械性能(力学性能)由表1所示,由表1可知,相比对照例,本发明实施例8至实施例11制备的氧化锗掺杂氧化锆陶瓷材料的三点弯曲强度和断裂韧性逐渐降低,
表明随着氧化锗的掺杂含量的增加,本发明氧化锗掺杂氧化锆陶瓷材料的三点弯曲强度逐渐下降,断裂韧性也有不同程度的降低,但是其力学性能已经能满足前牙美学修复中的使用要求。
[0061]
抗低温时效性能由图1、图2所示,其中,图1和图2中的a为对照例(简称3y

tzp或tz

3y),b为实施例8(简称0.5ge

3y),c为实施例9(简称1.0ge

3y),d为实施例10(简称1.5ge

3y),e为实施例11(简称2.0ge

3y),横坐标为x射线的入射角度的两倍,纵坐标为衍射后的强度,由图1可知,不同含量的氧化锗掺杂氧化锆陶瓷材料老化前的物相组成,均为四方相。各样品水热老化30h,相当于口内存活90年,由图2可知,老化30h后的样品逐渐在2θ=28.2
°
、31.3
°
和34
°
处出现了不同程度的单斜相峰。值得一提的是,与0.5ge

3y、1.5ge

3y、1.5ge

3y和2.0ge

3y的样品相比,氧化锆样品的单斜相含量最高。且随着氧化锗掺杂含量的增加,在2θ=28.2
°
、31.3
°
和34
°
处的单斜相峰逐渐变得低平,其中,1.5ge

3y和2.0ge

3y的样品水热老化30h后仅仅出现少量的单斜相峰,单斜相含量约为9%和5%,基本可以忽略不计。这表明,增加稳定剂(ge
4
)的掺杂量可以提高氧化锆的抗水热降解能力,且在摩尔百分比为1.5mol%至2.0mol%的氧化锗掺杂的氧化锆陶瓷材料具有较佳的抗低温时效性能。
[0062]
由上可知,本发明氧化锗掺杂氧化锆陶瓷材料,随着氧化锗掺杂含量的增加,其抗低温时效性能逐渐增强,机械性能略微下降,但仍能满足前牙美学修复中的使用要求。
[0063]
综上所述,本发明氧化锗掺杂氧化锆陶瓷材料的优势在于:传统的氧化锆陶瓷材料因较高的强度和硬度,易造成对颌牙的磨损,且不利于切削成型,并且透光率较低,较少用于前牙贴面修复,同时,抗低温时效性能差。本发明利用了氧化锗优异的抗低温时效性能及美学性能,不仅提高了氧化锆陶瓷材料的抗低温时效性能,还改善了氧化锆陶瓷材料的美学性能,其适宜的强度和硬度可用于制作前牙贴面,拓宽了氧化锆陶瓷材料的临床应用。
[0064]
以上技术特征构成了本发明的实施例,其具有较强的适应性和实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。
[0065]
表1
[0066][0067]
注:表格内数值表示平均值
±
标准差,括号内同样类型的数值表示无统计学差异,小写字母表示各组间的比较。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜