一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种无粘结剂的粉体造粒压片方法与流程

2021-09-14 23:07:00 来源:中国专利 TAG:制备 粉体 造粒 材料 方法


1.本发明属于材料制备技术领域,涉及一种粉体造粒方法。


背景技术:

2.粉体压片技术广泛应用于陶瓷、玻璃生产中,是一种重要的通用技术。高重量、尺寸精度陶瓷应用广泛,包括5g陶瓷滤波器、陶瓷电容器、高精度陶瓷结构件及其他各类功能陶瓷等。玻璃制备工艺中,也会用到粉体处理、压片技术,通过控制压片重量,生产高重量精度的玻璃块材。
3.目前,为了获得更好的流动性,常使用粘结剂将细粒径的粉体处理为粒径增大的球形聚集体。公布号为cn111995392a的发明专利,提出了一种低成本5g基站用陶瓷滤波器粉体及其制备方法,该技术方案中使用pva作为粘结剂造粒。授权公告号为cn102503391b的发明专利,提出了一种高铁磁性能和铁电性能的铁酸铋基复合材料的制备方法,该技术方案中,采用在粉末中加入pva粘结剂,经60目与120目筛网过筛的方法制备所述复合材料。公布号为cn110194664a的发明专利,提出了一种石榴石结构的低介电常数微波介质陶瓷材料及制备方法,该技术方案中,采用加入pva作为粘结剂,将混合好的粉体过100目和140目筛子的方法制备所述陶瓷材料。
4.粘结剂的作用主要是造粒增强粉体流动性,由于其粘性,使压制的片材更完整,不易分层缺损,但使用粘结剂,其粘结剂的纯度会影响粉体纯度,若排胶不当,易形成积碳、气孔,影响元件致密度和性能。若能不使用粘结剂,也能达到相同作用,且能制备高重量、尺寸精度的片材,这在陶瓷、玻璃生产中,将有着显著的优势。


技术实现要素:

5.为解决背景技术中所述的问题,本发明提出了一种无粘结剂的粉体造粒压片方法。
6.该方法包括如下步骤:
7.步骤一、混料过筛:将粉体按配比称量混合均匀,过60

100目筛;
8.步骤二、煅烧:混合后粉体转移至氧化铝或石英坩埚中,升温至低于粉体熔化温度的固相反应温度,保温4

10h;
9.步骤三、二次过筛:将煅烧后粉体过60

100目筛;
10.步骤四、干混:使用混料机对二次过筛后的粉体进行干混得到压片粉体;
11.步骤五、压片:将压片粉体填充进模具中,使用自动压片机进行压片得到初步片材;
12.步骤四、烧结:初步片材转移至坩埚中,升温至烧结温度保温烧结,烧结完成后得到所需片材。
13.所述的步骤一中,混合方式为球磨湿混或混料机干混,过筛前需将结块粉体进行破碎使其能全部过筛。
14.所述的球磨湿混,采用的研磨球材质为玛瑙、氧化铝或氧化锆,球磨湿混的液体研磨介质为无水乙醇或纯水,粉体、液体研磨介质、研磨球的重量比为1:0.3

1.2:2

5,球磨机的转速为150

250r/min,研磨时间8

24h;湿混完成后烘干,烘干温度50

100℃,烘干后过10

20目筛使研磨球与粉体分离。
15.所述的混料机干混,混料机自转速率30

100r/min,公转速率10

60r/min,混料时间2

10h。
16.所述的步骤四中,混料机自转速率30

100r/min,公转速率10

60r/min,混料时间2

10h。
17.所述步骤五中,模具的深度依据所需片材的重量来调节,所述自动压片机为单冲自动压片机,所述压片过程的压力为10

60kn。
18.所述步骤六中,烧结过程的温度低于粉体熔化温度的固相反应温度,保温时间4

10h。
19.进一步地,步骤一中,采用的研磨球的材质为优选氧化锆。
20.进一步地,所用的筛网为非金属材质筛网,优选尼龙筛网。
21.进一步地,步骤五中,使用自动压片机压片时,模具上下模仁端面水平,每次压片时施加的压力一致,使用单冲自动压片机压片时其施加的压力的一致性更好。
22.更进一步地,步骤六中,所述坩埚为氧化铝坩埚或者石英坩埚。
23.本发明与现有技术相比,粉体进行多次混合,保证了原料混合的均匀性;粉体中不添加粘结剂,使得粉体纯度更高,重量更精准;一次过筛使粉体形成良好的粒度分布,干混使不同粒度粉体均匀分布;煅烧后使得粉体中形成一定强度的大颗粒,增强粉体流动性;二次过筛可控制煅烧后的粉体粒径,不至于过大,利于压片;通过上述处理得到的压片粉体颗粒流动性好且分布均匀,提高了压片的一致性,采用了自动压片避免人为干扰,效率高;烧结过程中无需排胶,只需烧结使粉体进行固相反应,烧结后的片材实际重量与需求重量偏差≤1%,实际尺寸与平均尺寸偏差≤1%,形成了高精度的片材。
24.本发明能够批量压制高重量精度、高尺寸精度的片材,可用于制备一致性优良的陶瓷及玻璃材料,工艺方法简单,实用性高。
附图说明
25.图1为实施例1粉体煅烧和过60目筛后的放大100倍的显微镜照片。
26.图2为实施例2粉体煅烧和过80目筛后的放大100倍的显微镜照片。
具体实施方式
27.下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅做举例而已,同时通过说明,将更加清楚地理解本发明的优点。本领域的普通的技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。实施例中其他未详细说明的部分均为现有技术。
28.一种无粘结剂的粉体造粒压片方法的操作步骤详细说明如下所述。
29.(1)混料过筛:一次混料有球磨湿混与混料机干混两种方案。对于粒度、比重差异较大的粉体,优选球磨湿混,研磨球可起到破碎作用,利于粉料粒度趋于一致。对于粒度较
小且差异不大的粉体,优选混料机干混,效率更高。
30.若使用球磨湿混,将粉体按配比称量,加入配制好研磨球的球磨罐中,研磨罐材质为刚玉、氧化锆、玛瑙、尼龙、聚氨酯、或聚四氟乙烯,优选为聚四氟乙烯。研磨球材质为玛瑙、氧化铝、氧化锆,优选为氧化锆。再加入液体研磨介质,无水乙醇或纯水,优选为无水乙醇。粉体、液体研磨介质、研磨球重量比1:(0.3

1.2):(2

5)。无水乙醇不宜过多,混合后静置30min以上,乙醇清液不超过4mm为宜。球磨机转速150

250r/min,时间8

24h。球磨湿混完成,打开球磨罐,烘干,温度50

100℃,过10

20目筛,研磨球与粉体分离。混合后的粉体过60

100目筛,对结块粉体需进行粉碎使其全部过筛。
31.若使用混料机干混,混合前,粉体需全部能过100目筛,否则需粉碎使其全部过筛,粉碎方式有手动研磨、自动研磨或破碎机粉碎。干混时,混料机自转速率30

100r/min,公转速率10

60r/min,混料时间2

10h。混合完成后过60~100目筛。
32.(2)煅烧:将粉体转移至氧化铝或石英坩埚中,升温至低于粉体熔化温度的固相反应温度,保温4~10h。反应温度及保温时间,根据煅烧后粉体颗粒化状态确定;提高反应温度及保温时间,则粉体颗粒度更大,颗粒强度更高。这是由于常见的氧化物粉体粒度在微米级或纳米级,由于表面能影响,容易团聚,造成流动性较差,不利于压片,煅烧后使得粉体中形成一定强度的大颗粒,增强粉体流动性。
33.(3)二次过筛:煅烧后的粉体过60

100目筛,煅烧后的粉体易结块,需对未通过粉体进行粉碎使全部过筛,二次过筛可控制煅烧后的粉体粒径,不至于过大,利于压片。
34.(4)干混:过筛后不同粒径粉体分布不匀,粉体颗粒圆度不佳,使用混料机对过筛后的粉体进行干混,使不同粒径粉体分布均匀,同时,粉体碰撞、摩擦,使其球化,增强流动性。混料机自转速率30

100r/min,公转速率10

60r/min,混料时间2

10h,婚混料完成后得到压片粉体。
35.(5)压片:使用自动压片机压片,压片前调整模具的上下模仁端面水平,模具的直径固定后,调节模具深度以获得所需重量的片材,从而模具固定后可保证每次填充进入模具的物料重量相同,自动压片机每次压片时施加压力一致,压力范围为10

60kn,压片完成后的到初步片材。
36.自动压片机优选使用单冲自动压片机,其压片时施加的压力的一致性更好。根据烧结收缩比例,进行尺寸反演,可确定所需模具直径及模具深度。
37.(6)烧结:初步片材转移至坩埚中,升温至烧结温度保温烧结,烧结完成后得到所需片材。烧结过程的温度低于粉体熔化温度的固相反应温度,保温时间4

10h。升温速率、保温时间根据原料及片材要求设定。
38.烧结后,片材实际重量与需求重量偏差1%以下,实际尺寸与平均尺寸偏差1%以下。
39.所述筛网材质为非金属,优选为尼龙。
40.下面结合具体实施例对该粉体造粒压片方法进行详细说明。
41.实施例1
42.本实施例锆钛酸钡(bzt)陶瓷的化学式为bazr
x
ti1‑
x
o3,x=0.1,其制备过程如下:
43.(1)混料过筛:原料为baco3、zro2、tio2,纯度均为99.99%,按化学计量比称取步骤所需的原料,倒入球磨罐中,加入无水乙醇球磨,球磨转速200r/min,时间10h。所述原料、无
水乙醇、氧化锆磨球的比值为1:0.8:2。球磨湿混完成后烘干,温度60℃,过10

20目筛,快速将研磨球与粉体分离。由于粉体烘干极易结块,使用粉碎机破碎,并使粉体全部过120目筛。
44.(2)煅烧:将过筛后的粉体转移至氧化铝坩埚中,5℃/min升温至1100℃,保温4h,随炉冷却,粉体颗粒化并具有一定硬度。
45.(3)二次过筛:煅烧后粉体易结块,过60目筛,粉碎未通过的大颗粒粉体,使其全部过筛。
46.(4)干混:过筛后不同粒径粉体分布不匀,粉体颗粒圆度不佳,使用混料机对过筛后的粉体进行干混。混料机自转速率60r/min,公转速率30r/min,混料时间3h。
47.(5)压片:使用单冲自动压片机压片,模具直径10mm,固定模具深度,可保证每次填充相同含量的物料,施加压力50kn,设定出料周期5s,可实现相同规格陶瓷坯料初步片材的连续压制。
48.(6)烧结:最后在1450℃下烧结10h,制成高重量、尺寸精度的bzt陶瓷。片材实际重量与需求重量偏差1%以下,实际尺寸与平均尺寸偏差1%以下。根据烧结收缩比例,进行尺寸反演,可得到需求尺寸的陶瓷。下表为制备重量240mg的bzt数据表。
49.表1 bzt陶瓷重量与直径数据表
[0050][0051]
实施例2
[0052]
本实施例石榴石结构的微波介质陶瓷为y3mgal3sio
12
,其制备过程如下:
[0053]
(1)混料:原料为:y2o3、mgo、al2o3、sio2,纯度均为99.99%,按化学计量比称取步骤所需的原料,过100目筛,将未能过筛的粉体粉碎使其全部通过。将所有粉体倒入混料机中,
混料机自转速率80r/min,公转速率40r/min,混料时间6h,混合完成后过100目筛。
[0054]
(2)煅烧:将过筛后的粉体转移至氧化铝坩埚中,5℃/min升温至1200℃,保温6h,随炉冷却,粉体颗粒化并具有一定硬度。
[0055]
(3)二次过筛:煅烧后粉体易结块,过80目筛,粉碎未通过的大颗粒粉体,使其全部过筛。
[0056]
(4)干混:过筛后不同粒径粉体分布不匀,粉体颗粒圆度不佳,使用混料机对过筛后的粉体进行干混。混料机自转速率40r/min,公转速率20r/min,混料时间2h。
[0057]
(5)压片:使用单冲自动压片机压片,模具直径5mm,固定模具深度,可保证每次填充相同含量的物料,施加压力30kn,设定出料周期5s,可实现相同规格陶瓷坯料初步片材的连续压制。
[0058]
(6)烧结:最后在1500℃下烧结6h,之后3℃/min降温到800℃后随炉冷却,制成高重量、尺寸精度的y3mgal3sio
12
陶瓷。片材实际重量与需求重量偏差1%以下,实际尺寸与平均尺寸偏差1%以下。根据烧结收缩比例,进行尺寸反演,可得到需求尺寸的陶瓷。下表为制备重量80mg的y3mgal3sio
12
数据表。
[0059]
表2 y3mgal3sio
12
陶瓷重量与直径数据表
[0060][0061][0062]
以上结合附图及具体实施例详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜