一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种铕(Ⅲ)的共轭有机配合物及其制备方法和应用与流程

2022-03-05 02:01:08 来源:中国专利 TAG:

一种铕(ⅲ)的共轭有机配合物及其制备方法和应用
技术领域
1.本发明属于光电材料技术领域,具体涉及一种铕(ⅲ)的共轭有机配合物及其制备方法和在有机电致发光材料领域的应用。


背景技术:

2.当今时代科技迅猛发展,电子信息已经颠覆了人们的生活方式。随着科技的进步,人们对信息显示技术有着越来越高的期待和要求。早在20世纪50年代,对于有机材料制备电致发光器件的研究开始涌现。a.bernanose等人在蒽单晶片的两侧加400v的直流电压时观测到了发光现象,这是关于有机电致发光器件的最早报道。1987年,tang首次研制出具有实用价值的低驱动电压有机电致发光器件。该器件用无定形的tpd薄膜作为空穴传输层,以8-羟基喹啉铝(alq)薄膜作为发光层。在小于10v电压驱动下,得到大于100cd/m2的发光亮度,其量子效率约为1%。这项成功让有机电致发光器件有了巨大的飞跃,开创了对有机电致发光器件研究的新纪元。在此基础上,tang等又提出新思路:通过在alq层中掺杂少量高效荧光材料,可使量子效率提高2-3倍。并且通过不同比例和材料的掺杂,发射光可平稳地从蓝-绿到橙-红之间调节,甚至可以产生白光。
3.对于稀土配合物的发光性能研究起步较晚,但发展迅速。1942年,weissman发现利用紫外光激发铕配合物的有机配体能观察到eu
3
的荧光发射现象,拉开了人们对稀土发光配合物及其发光机理的研究。2004年,k.binnemans等将有机配体phen修饰后引入体系,并加入第二配体噻吩甲酰三氟丙酮(tta)来增强eu
3
的荧光性能。shao guang等引入phen作为辅助配体合成铕的三元配合物。1994年,j kido等首次设计了一种典型的三元eu
3
配合物eu(dbm)3phen,其最大亮度为460cd/m2。yu liu等合成并表征了在邻菲罗啉配体上修饰三苯胺基团的三元铕配合物,在1.2ma/cm2的电流密度下,器件的最大外量子效率为1.8%并且峰值电流效率为2.6cd/a。在173.2ma/cm2下的最大亮度为1333cd/m2。
4.oled技术的主要优点是主动发光,响应速度比lcd快,驱动电压低,发光效率高,结构薄,重量轻。通过在发光层中掺杂,发红、绿、蓝光(rgb)的oled都可以得到,满足全彩色大屏幕平板显示。低温处理技术,使得柔性器件得以实现。蓬勃发展至今,有机电致发光材料(oled)仍面临着待突破的难题。为了展示在电致发光中的优势,除了要求材料满足光致发光性质以外,还有例如具有更好的载流子传输能力、高热稳定性、良好的成膜性等。
5.为了解决难题,当前主要通过优化电致发光器件结构和设计改善材料分子入手。芘是一个大π共轭的芳香基团,有着高发光效率和高电荷载流子迁移率的特点,与同类材料相比,表现出优秀的空穴注入能力。芘本是一个优秀的蓝光材料,但是由于其大平面共轭结构,容易导致发色团聚集而产生荧光猝灭,使得发光效率降低。所以目前常在芘的1,3,6,8位引入其他基团或者将芘作为基团引入其他结构中来抑制分子聚集,提高发光效率和空穴注入能力。


技术实现要素:

6.本发明提供一种用于高效长寿命oled器件的发光材料即铕(ⅲ)四元配合物[eu(dbm)3phenpy2],通过在中性配体1,10-菲啰啉的3,8位引入芘基团修饰,既增大空间效应抑制分子聚集猝灭,又引入大π共轭芳环结构增加配体中氮原子的电子云密度,提高载流子传输能力。该材料在有机电致发光材料、有机场效应晶体管、荧光探针、电子纸材料等领域有着较大的应用前景。
[0007]
为了达到上述目的,本发明提供了一种铕(ⅲ)的共轭有机配合物,其是采用经典的三元二酮铕离子配合物的化学结构,利用β-二酮类配体二苯甲酰甲烷和芘基团对称修饰的中性配体3,8-二芘-1,10-邻菲咯啉与铕(ⅲ)配合,合成铕(ⅲ)四元配合物[eu(dbm)3phenpy2]。
[0008]
本发明还提供了上述铕(ⅲ)的共轭有机配合物的制备方法,包括如下步骤:
[0009]
(1)芘修饰的菲啰啉配体合成
[0010]
将芘硼酸酯化,以提高后续反应的稳定性和产率;采用suzuki偶联合成3,8-二芘-1,10-菲啰啉配体;
[0011]
反应步骤如下:
[0012]

[0013]

[0014]
(2)铕(ⅲ)的共轭有机配合物的配合
[0015]
在乙醇体系中先加入步骤(1)中合成的3,8-二芘-1,10-菲啰啉配体以及六水合三氯化铕,并用氢氧化钠调节体系ph至7-8;60℃加热回流半小时后,加入二苯甲酰甲烷继续反应3小时;产物经萃取纯化后得到目标产物铕(ⅲ)四元配合物[eu(dbm)3phenpy2];
[0016]
反应步骤如下:
[0017][0018]
进一步的,步骤(1)中,所述芘修饰的菲啰啉配体合成的具体步骤如下:
[0019]
1)称取pd(pph3)4溶于甲苯,进行脱氧处理,容器用锡箔纸包裹避光,另取甲苯单独进行脱氧处理;
[0020]
2)在反应瓶中加入ba(oh)2·
8h2o、芘硼酸酯、1,10-二溴菲啰啉及磁子,对装置密封进行抽真空,并将装置用锡箔纸包裹,依次加入处理好的pd(pph3)4溶液、甲苯,使体系完
全溶解后110℃加热回流30h;
[0021]
3)反应结束后,用二氯甲烷、水进行萃取;
[0022]
4)先用乙酸乙酯/石油醚作为洗脱剂在硅胶上柱层析分离小极性杂质,后用吡啶/乙酸乙酯分离出产物,得到黄色粉末,其中乙酸乙酯/石油醚的体积比为1:5,吡啶/乙酸乙酯的体积比为1:15。
[0023]
本发明还提供了上述铕(ⅲ)的共轭有机配合物在oled器件发光层材料或者作为白光的主体材料以及磷光的主体材料的器件、电子或空穴载流子传输材料、有机集成电路、有机场效应管的半导体材料、有机太阳能电池材料、电子纸材料领域的应用。
[0024]
本发明还提供了上述的四苯乙烯功能化的齐聚噻吩衍生物在对爆炸物检测方面的应用。
[0025]
有益效果:
[0026]
1)本发明的合成步骤简单,成本不高;
[0027]
2)芘是一个大π共轭的芳香基团,有着高发光效率和高电荷载流子迁移率的特点,与同类材料相比,表现出优秀的空穴注入能力,提高了器件效率;
[0028]
3)在常用中性配体邻菲罗啉中引入空穴传输基团,增加菲啰啉氮原子的电子云密度,有助于改善载流子传输性能,适用于作电子传输材料;
[0029]
4)由于芘基团的空间效应,其避免了配合物的聚集、减少了荧光猝灭从而提高了荧光量子产率。
附图说明
[0030]
图1为实施例1中间产物phenpy2的1hnmr谱图;
[0031]
图2为实施例1eu(dbm)3phenpy2配合物的紫外可见吸收光谱图;
[0032]
图3为实施例1eu(dbm)3phenpy2配合物的循环伏安还原曲线;
[0033]
图4为实施例1eu(dbm)3phenpy2配合物的循环伏安氧化曲线。
具体实施方式
[0034]
为了更好地理解本发明专利的内容,下面通过具体的实施例来进一步说明本发明的技术方案,具体包括产物合成、光谱及电化学相关性质测定,但是实施例并不限制本发明。
[0035]
实施例1
[0036]
(1)合成3,8-二芘-1,10-菲啰啉(phenpy2)配体
[0037]
实验前:称取pd(pph3)4(76mg,0.06mmol)溶于10ml甲苯,进行脱氧处理,容器需用锡箔纸包裹避光;甲苯30ml单独进行脱氧处理。
[0038]
实验反应步骤:
[0039]
在反应瓶中加入ba(oh)2·
8h2o(1.577g,5mmol)、芘硼酸酯(2.17g,6.6mmol)、1,10-二溴菲啰啉(1g,2.95mmol)及磁子,对装置密封进行抽真空,并将装置用锡箔纸包裹;依次加入处理好的pd(pph3)4溶液、甲苯30ml,使体系完全溶解后110℃加热回流30h;反应结束后用二氯甲烷、水进行萃取;先用体积比为1:5的乙酸乙酯/石油醚作为洗脱剂在硅胶上柱层析分离小极性杂质,后用体积比为1:15的吡啶/乙酸乙酯分离出产物,得到黄色粉末
1054mg(产率61.51%)。中间产物phenpy2的1hnmr谱图如附图1所示,1hnmr(400mhz,chloroform-d)δ9.29(d,j=2.3hz,1h),9.21(d,j=2.3hz,1h),8.52(d,j=2.3hz,1h),8.44(d,j=2.3hz,1h),8.35(d,j=7.8hz,1h),8.31

8.27(m,1h),8.19(d,j=2.2hz,3h),8.16

8.12(m,2h),8.10(d,j=7.9hz,1h),8.01(d,j=8.8hz,1h),7.87(d,j=8.8hz,1h),7.79(s,1h),1.33(s,2h),1.28(s,1h).
[0040]
(2)合成铕(ⅲ)四元配合物[eu(dbm)3phenpy2]
[0041]
将(1)中合成的配体phenpy2(58mg,0.1mmol)溶于氯仿(4ml)中,待完全溶解后加入乙醇(5ml)体系中,缓慢加入六水合氯化铕(36.7mg,0.1mmol)搅拌;用氢氧化钠水溶液将上述体系滴定至ph约为7-8左右,对溶液体系除氧,反应装置抽真空;溶液除氧15min后加入反应装置中,60℃加热回流0.5h,将二苯甲酰甲烷(73.92mg,0.33mmol)溶于适量乙醇中,除氧15min,再缓慢滴加进上述体系中反应3h;反应结束后用二氯甲烷和水进行萃取,旋蒸,烘干;
[0042]
得到配合物[eu(dbm)3phenpy2]分子式如下:
[0043][0044]
测试例1
[0045]
对实施例1铕(ⅲ)四元配合物[eu(dbm)3phenpy2]的紫外吸收光谱,荧光光谱的测定。
[0046]
将eu(dbm)3phenpy2溶解在二氯甲烷稀溶液中,采用岛津uv-3150紫外可见光谱仪进行紫外可见吸收光谱测定。结果如图2eu(dbm)3phenpy2的紫外吸收光谱所示,eu(dbm)3phenpy2溶液在大于300nm区间的最大吸收峰位于347nm。
[0047]
测试例2
[0048]
对实施例1铕(ⅲ)四元配合物[eu(dbm)3phenpy2]的循环伏安曲线进行测定。
[0049]
将eu(dbm)3phenpy2溶解在n,n二甲基甲酰胺(dmf)溶液中,电解质采用四丁基六氟磷酸铵,扫描速率为5mv/s;采用标准的三电极电化学池,铂电极为工作电极,铂丝为对电极,ag/agcl为参比电极;起始氧化电位为0.761ev,相应的homo能级计算为-5.161ev;起始还原电位为-1.786ev,相应的lumo能级计算为-2.614ev,禁带宽度为2.547。
[0050]
测试结果如图3和图4所示:图3为eu(dbm)3phenpy2的还原曲线,还原峰电位为e
red
=-2.695ev。图4为eu(dbm)3phenpy2的氧化曲线,得到的氧化电位e
ox
=1.027ev。
[0051]
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献