一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种检测风力发电机组叶片开裂的方法与流程

2021-09-10 23:47:00 来源:中国专利 TAG:检测 风力发电机组 叶片 开裂 方法


1.本发明属于风力发电机组检测技术领域,具体涉及一种检测风力发电机组叶片开裂的方法。


背景技术:

2.随着风力发电技术的成熟,风力发电已经成为我国电力能源的重要组成部分,目前兆瓦级大型风力发电机组一般都是水平轴、3叶片的变速恒频型风力发电机组,叶片是其中的一个重要零部件,是风电机组将风能转化为电能的源头,其成本可达风力发电机组整机成本的20%~30%,在风机运行过程中,如果叶片发生了损坏,不能就地维修,则需要更换或者返厂维修,其单支叶片更换或者维修费用超过上百万,损失巨大;而且更换叶片需要的周期比较长,在此过程中风电机组不能发电,严重影响设备发电量。
3.目前为了防止叶片出现破坏性损坏,以避免更换或者返厂维修,一般采用高清望远镜或者用无人机定期巡检,一旦发现叶片出现开裂,则立刻停机修复,但是这两种方法都存在一定的缺陷,主要问题如下:1)工作强度大,作业效率低;2)对于使用望远镜的检测方式来说,检测时需要停机,巡检时间较长,损失发电量较大;3)风机一般都是安装在自然环境比较恶劣的地方,当天气恶劣时,巡检工作无法进行。因此传统的叶片巡检方式都受外部环境和风机状态的限制,检测效率和检测结果准确率较低,且会影响风力发电量。近年来,随着大数据技术的发展,也有相关厂家通过风机的监控系统获得变桨电机的温度变化来分析叶片开裂进行预警,一般由于温度传感器精度的限制以及温度变化具有延迟性,故该方法的准确性受到影响。
4.综上所述,亟需提供一种准确性高,可及时监测风机叶片的状态的检测风力发电机组叶片开裂的方法。


技术实现要素:

5.本发明的目的是提供一种准确性高,可及时监测风机叶片的状态的检测风力发电机组叶片开裂的方法。
6.上述目的是通过如下技术方案实现:一种检测风力发电机组叶片开裂的方法,包括如下步骤:s1,获取风力发电机组的运行状态;s2,判断风力发电机组是否处于发电状态,是,则进入步骤s3,否,则进入步骤s1;s3, 获取风力发电机组包括变桨电机电流、风机轮毂转速、叶片方位角和风速在内的运行参数,将上述运行参数以数组形式存储,并记录采样数组的个数,然后进入步骤s4;s4,判断采样数组的个数是否大于或等于采样总数设定值,是,则进入步骤s9,否,则进入步骤s5;其中,采样总数设定值为2
a
,a为正整数;s5,计算每组数组中的风机的电机电流实际值相对于风机的电机电流理论值的增
量比,记为factor1(n),其中n为采样数组个数,factor1(n)表示第n个采样数组中的风机的电机电流实际值相对于风机的电机电流理论值的增量比,然后进入步骤s6;其中,电机电流理论值通过叶片方位角和风速计算确定;s6,计算获取的相邻数组中的后一数组中的电流实际值相对于电流理论值的增量比与前一数组中的电流实际值相对于电流理论值的增量比的比值,记为factor2(n),设factor2(1)=0,当n大于1时,factor2(n)=factor1(n)/factor1(n

1),然后进入步骤s7;factor2(n)表示第n个采样数组中的电流实际值相对于电流理论值的增量比与第n

1个采样数组中的电流实际值相对于电流理论值的增量比的比值,记为factor2(n);s7,判断factor1(n)是否大于预定值,是,则进入s8,否,则认定变桨电机电流为正常,返回至步骤s3;s8, 判断factor2(n)是否在预定的范围内,是,则计数器开始计数,计数的数值为m,m为正整数,第一个factor2(n)在预定的范围内时,m=1,每增加一个factor2(n)在预定的范围内,则m增加1;否,则返回至步骤s3;s9,计算计数器计数的数值与采样数组的总数的比值,记为factor3,然后进入步骤s10;s10,判断factor3是否大于设定值,是,则进入步骤s11,否则返回步骤s3;s11,将获取的风机轮毂转速做傅里叶变换,获得傅里叶变换后的频谱,并计算采样的风机轮毂转速的平均值的1p频率,然后进入步骤s12;s12,判断在采样的风机轮毂转速的平均值的1p频率的预定范围内的幅值最大值是否大于设定值,否,则进入步骤s13,是,则返回至步骤s3;s13,判断为风力发电机组叶片开裂。
7.进一步的技术方案是,所述步骤s3中,a为大于或等于13 的正整数。
8.进一步的技术方案是,所述步骤s7中的预定值为0.35。
9.进一步的技术方案是,所述步骤s8中所述预定的范围为大于0.85且小于1.15。
10.进一步的技术方案是,所述步骤s10中的设定值为0.8。
11.进一步的技术方案是,所述步骤s12中判断在采样的风机轮毂转速的平均值的在(0.8~1.2)*1p频率范围的幅值最大值是否大于25,否,则进入步骤s13,是,则返回至步骤s3。
12.本发明的发明人发现当叶片出现开裂现象时,叶片的气动特性会发生变化,相应的在同等外部条件下叶片对应的变桨电机的电流会增加,且变桨电机电流的变化具有一定的规律特性,本发明通过对变桨电机电流变化的分析处理,排除叶片安装和变桨电机本身故障对变桨电机电流的影响,可以做到及时监测风机叶片的状态,准确率高,有利于叶片的及时维护,降低维护成本。
13.本发明通过风机变桨电机电流、叶片方位角、轮毂转速、风速的分析,可以对风机叶片是否发生开裂进行预判,防止叶片出现破坏性损坏,有利于叶片的及时维护,降低风机维护成本,减少发电量损失。
附图说明
14.构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实
施例及其说明用于解释本发明,并不构成对本发明的不当限定。
15.图1为本发明一种实施方式所涉及的检测风力发电机组叶片开裂的方法的流程示意图。
具体实施方式
16.下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。此外,本领域技术人员根据本文件的描述,可以对本文件中实施例中以及不同实施例中的特征进行相应组合。
17.本发明实施例如下,参照图1,一种检测风力发电机组叶片开裂的方法,包括如下步骤:s1,获取风力发电机组的运行状态;s2,判断风力发电机组是否处于发电状态,是,则进入步骤s3,否,则进入步骤s1;s3, 获取风力发电机组包括变桨电机电流、风机轮毂转速、叶片方位角和风速在内的运行参数,将上述运行参数以数组形式存储,并记录采样数组的个数,然后进入步骤s4;s4,判断采样数组的个数是否大于或等于采样总数设定值,是,则进入步骤s9,否,则进入步骤s5;其中,采样总数设定值为2
a
,a为大于等于13的正整数;s5,计算每组数组中的风机的电机电流实际值相对于风机的电机电流理论值的增量比,记为factor1(n),其中n为采样数组个数,factor1(n)表示第n个采样数组中的风机的电机电流实际值相对于风机的电机电流理论值的增量比,然后进入步骤s6;其中,电机电流理论值通过叶片方位角和风速计算确定;s6,计算获取的相邻数组中的后一数组中的电流实际值相对于电流理论值的增量比与前一数组中的电流实际值相对于电流理论值的增量比的比值,记为factor2(n),设factor2(1)=0,当n大于1时,factor2(n)=factor1(n)/factor1(n

1),然后进入步骤s7;factor2(n)表示第n个采样数组中的电流实际值相对于电流理论值的增量比与第n

1个采样数组中的电流实际值相对于电流理论值的增量比的比值,记为factor2(n);s7,判断factor1(n)是否大于0.35,是,则进入s8,否,则认定变桨电机电流为正常,返回至步骤s3;s8, 判断factor2(n)是否在预定的范围内,若0.85<factor2(n)<1.15,则计数器开始计数,计数的数值为m,m为正整数,第一个factor2(n)在预定的范围内时,即0.85<factor2(n)<1.15,m=1,每增加一个factor2(n)在预定的范围内,则m增加1;否,则认为叶片变桨电机电流增加不具备规律性,一般而言这种变化主要由电机本身故障引起,不是叶片开裂引起的,返回至步骤s3;s9,计算计数器计数的数值与采样数组的总数的比值,记为factor3,factor3=m/n然后进入步骤s10;s10,判断factor3是否大于0.8,是,则进入步骤s11,否则返回步骤s3;s11,将获取的风机轮毂转速做傅里叶变换,获得傅里叶变换后的频谱,并计算采样的风机轮毂转速的平均值的1p频率,然后进入步骤s12;s12,判断在采样的风机轮毂转速的平均值的在(0.8~1.2)*1p频率范围的幅值最
大值是否大于25,否,则进入步骤s13,

是,则可以认为该幅值的增加不是由叶片开裂引起是由叶片安装引起的,叶片安装位置不平衡会导致轮毂转速的1p频率幅值高于正常值,返回至步骤s3;s13,判断为风力发电机组叶片开裂。
18.综上,本发明通过风机变桨电机电流、叶片方位角、轮毂转速、风速的分析,可以对风机叶片是否发生开裂进行预判,防止叶片出现破坏性损坏,有利于叶片的及时维护,降低风机维护成本,减少发电量损失。
19.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜