一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

作为兴奋性氨基酸神经传递素拮抗药的合成杂芳基多胺的制作方法

2021-10-24 18:51:52 来源:中国专利 TAG:
专利名称:作为兴奋性氨基酸神经传递素拮抗药的合成杂芳基多胺的制作方法
技术领域
本发明涉及一类杂芳基多胺及它的药物上可以接受的盐类,它们是兴奋性氨基酸神经传递素的拮抗药,这些神经性传递素作用于包括无脊椎动物和脊椎动物的各种有机体的神经细胞。本发明的多胺是某些多胺的合成类似物,后者被发现存在于Agelenopsis aperta蜘蛛的毒液中。本发明也涉及这类多胺和它们的盐类在拮抗兴奋性氨基酸神经传递素中的作用。这些神经传递素作用于细胞,例如在某种有机体中的神经系统中的细胞。本发明还涉及这类多胺和它的盐在处理由兴奋性氨基酸神经传递素引起的疾病和病况时的应用,在控制有害无脊椎动物方面的应用,也涉及包含该多胺类及其盐的组合物。本发明也涉及制备这类多胺的方法。
据报导,该Agelenopsis aperta蜘蛛的毒液含有至少两种可影响钙流动的两种毒素,见Jackson,H.等人,Soc.Neu.Sci.Abstr.121078(1987)。这些作者发现了一种毒素,并将其称作为AG2,它具有小于1000道尔顿的分子量,并在组织的宽广范围内表现出对于钙流动的抑制作用。另外,Jackson,H.等人在Soc.Neu.Sci.Abstr.12730(1986)报导了由Agelenopsis aperta所得到的另外一种毒素,它含有一种分子量大约为6000M.W.的组分。据报导,该毒素可阻滞突触前的传递,并且认为,该毒素阻滞了与释放神经传递素有关系的钙通道。
某些被发现存在于Agelenopsis aperta蜘蛛毒液中的多胺类被公开于美国专利U.S.5,037,846中,该专利于1989年4月28日申请,并已转让给受让人,该多胺类及其药物上可接受的盐可作为细胞中的兴奋性氨基酸阻滞剂的接受体,并且这类多胺中的一种B1也已被证实可作为钙通道的阻滞剂。
兴奋性氨基酸神经传递素拮抗药的各种化合物具有多种用途。兴奋性氨基酸神经传递素拮抗药用于处理下列病况,例如中风,大脑局部缺血,神经机能失调例如Alzheimer疾病和癫痫。此外尚可作为精神治疗剂。这可参见D.Lodge,E.所著的“在健康和疾病中的兴奋性氨基酸”(由John Wiley and Sons Ltd出版,纽约,NY,1988),其论点被引用于此处作为参照。另外,这类化合物在细胞生理学例如神经细胞的研究和有害无脊椎动物的控制方面是有用的。
在哺乳动物的大脑中,谷氨酸是主要的兴奋性神经传递素。因为谷氨酸接受体的发展中的药理学研究,已经建议它们的变异分为几种副型,这在过去十年中产生了巨大的激动。根据外生源兴奋剂N-甲基-D-天冬氨酸(NMDA)的选择作用而分类的谷氨酸接受体副型,因为这些接受体被认为在各种神经病理学,包括中风,癫痫,神经机能失调(如Alzheimer疾病)的治疗中起作用,因而已经成为深入研究的课题。当前有两大类NMDA接受体拮抗药,它们被极力说明用在有用临床药物的寻找中。第1类由竞争性的拮抗药所组成,后者与结合到接受体位置上的谷氨酸相互干扰。这些化合物以高的极性化合物例如膦酸酯化合物AP7和AP5为特征。竞争性试剂的这种高带电结构使其不能渗透血液/大脑的阻挡层,从而限制了其治疗效果;第2类由非竞争性拮抗药所组成,后者由于作用在与NMDA接受体络合物相结合的离子通道上而阻滞了NMDA接受体的功能,这些化合物包括MK-801和1-(1-苯基环已基)哌啶(Phencyclidine,即PCP)。这些类化合物的潜在精神病作用是通过这些机理而起作用的已知药物的清楚倾向。
近来,基于对蜘蛛毒液的新型谷氨酸拮抗药的鉴定,在详尽的研究下,产生了第三类拮抗药。由Agelenopsis aperta毒液中分离出来的显示出脊椎动物NMDA接受体的有力和特殊的拮抗性芳基胺结构,已经被公开在美国专利申请序号554,311(1990年7月17日申请)和美国专利5037846(1990年7月31日申请)中。这种由Agelenopsis aperta毒液中分离出来的芳基胺类是以酰胺键结合在一起由芳香族酸和多胺部分来组成的复合结构,在这些结构中,多胺部分的某些胺是以N-羟基胺类或季铵盐类起作用的。该芳基胺的化学结构与上述标准竞争性剂AP5或AP7,也与非竞争性化合物MK-801有区别。例如,披露于上述专利5037846中的多胺AGEL416,被披露具有下列所示的结构
由于这些芳基胺NMDA拮抗药的机理也与竞争性的和MK801/PCP的这两类都有区别,因而在NMDA接受体中,蜘蛛毒液芳基胺提供了一种新颖的拮抗药化合物类型。
就天然产生的化合物这一点而言,本披露所给出的好处在于目前可以用制备方法来得到该化合物,而不是从全部Agelenopsis aperta毒液通过分离/纯化作用来得到,因此还可能合成出非天然产生的同一组的类似化合物。
本申请涉及一类通式为R-(CH2)m-Co-R′的杂芳基多胺类,其中,R是含有1或2个氮原子的五元至七元的氮杂环体系或八元至十一元的氮杂双环体系,或被一个或多个取代基所取代的任一上述体系,该取代基独立地选自F,Cl,Br,OH,C1至C4的烷基,C1至C4的烷氧基,CF3,苯基,氨基,C1至C4的烷氧基,以及二(C1~C4)烷氨基;m是0或1;R′是-〔NH(CH2)n〕xNH2;每个n独立地是2至5;而且X是1至6,其条件是当R为3-吲哚,R′为-〔NH(CH2)3〕2NH-(CH2)4NH(CH2)3NH2时,那么m为0。
本发明还涉及通式为R-(CH2)m-Co-R′的那些化合物或其药物上可以接受的酸加成盐,其中,R是具有1或2个氮原子的五元至七元氮杂环体系或者八元至十一元的氮杂双环体系,或者被一个或多个取代基所取代的任一上述体系,取代基独立地选自F,Cl,Br,OH,C1至C4的烷基,C1至C4的烷氧基,CF3,苯基,C1至C4的烷氨基,和二(C1~C4)烷氨基;m是0或1;R1是
每一个n独立地是2至5;X是0至4,Y和Z每一个独立地为1至5;而X和更大的Y和Z的总和是1至5。
本申请还涉及通式为R-(CH2)m-Co-R1的化合物或一种药物上可接受的它的酸加成盐,式中R是具有1或2个氮原子的五元至七元氮杂环体系,或者八至十一元氮杂双环体系,或者被一个或多个取代基所取代的任一上述体系,取代基选自F,Cl,Br,OH,C1至C4的烷基,C1至C4的烷氧基,CF3,苯基,C1至C4的烷氨基,以及二(C1至C4)烷氨基;m是0或1;R1是
式中每一个a相同,而且是2至5;每一个b相同,而且是2至5;每一个n独立地是2至5;x是0至3;每一个y相同,而且是0或1;z是0至3;而且x y z是0至4。
本发明另外还涉及下列通式的化合物
或者被1个或多个取代基所取代的上述化合物,取代基独立地选自F,Cl,Br,OH,C1至C4的烷基,C1至C4的烷氧基,CF3,苯基,氨基,C1至C4的烷氨基,和二(C1至C4)烷氨基,或者它的药物上可以接受的酸加成盐,其中Z是H或R1,R1是-(CH2)mCo〔NH(CH2)n〕xNH2;m是0或1,每一个n独立地是2至5;而x是1至6。
本发明的氮杂环体系可以是饱和的,不饱和的,或芳香族的,优选的是芳香族的体系。说到单环体系,六元员的体系是优选的,即吡啶,哒嗪,嘧定及吡嗪。双环体系可以是稠合的或桥接的,九元或十元稠合体系是优选的,例如吲哚,异吲哚,氮杂吲哚,喹啉,异喹啉,噌啉,喹唑啉,喹喔啉,2,3-氮杂萘及吡啶并吡啶。上述二环类中,特别优选的是吲哚。
优选的R1基是其中的X是4或5,每个n独立地是3或4的那一些,特别优选的R1基是-〔NH(CH2)3〕5-NH2及-〔NH(CH2)3〕3-NH(CH2)4-NH(CH2)3-NH2。
本发明的多胺类及其药物上可接受的盐是兴奋性氨基酸神经传递的拮抗药。因此,该多胺类本身在拮抗这种兴奋性氨基酸神经传递素方面是有用的。本发明的多胺类在控制有害的无脊椎动物方面,在哺乳动物中因兴奋性氨基酸神经传递素引起的疾病和病况的治疗方面,也是有用的。该多胺作为哺乳动物的精神治疗剂也是有用的。
用于制备通式为
的多胺的合成图解示于以下的图解A至C反应图解A
反应图解C
按照反应图解A,通式Ⅳ的多胺中间体化合物,通过以二氨基丁胺开始的步骤顺序来加以制备。按照反应图解A,适于制备通式为Ⅷ的中间体化合物的反应条件,在实施例5的1至7部分给出。反应图解B说明了用于制备通式Ⅸ的中间体化合物的方法。适于制备该中间体的反应条件在实施例5第8部分中给出。制备通式Ⅻ的本发明多胺化合物的方法表示在反应图解C中。适于把通式Ⅷ和通式Ⅸ的中间体化合物偶合起来并接着制备通式Ⅻ化合物的反应条件在实施例5的1至11部分中给出。
本发明的多胺可逆地拮抗兴奋性氨基酸神经传递素,该神经传递素作用于细胞,例如包括无脊椎动物和脊椎动物的各种有机体的神经系统中的细胞。全文中所使用的术语脊椎动物意欲包括哺乳动物。全文中所使用的“无脊椎动物”意欲包括例如昆虫,外寄生物,内寄生物,本发明的多胺类对于拮抗兴奋性氨基酸神经传递素的能力,按照下列方法,通过在新生期老鼠的小脑中被阻滞的N-甲基-D-天冬氨酸(NMDA)-诱导CGMP的提高来加以说明。十只8~14日龄的Wistar老鼠的小脑被快速地兴奋,并将它放置在4℃的克雷伯氏/碳酸氢盐缓冲液中,pH7.4,然后用Mcllwain组织切碎机(The Nickle Laboratory Engineering Co.制造,Gomshall Surrey,英国)将它切成0.5毫米×0.5毫米的切片。将所得到的小脑切片转移到37℃的100毫升克雷伯氏/碳酸氢盐缓冲液中,而该缓冲液用95∶5的O2/Co2继续进行平衡。该小脑试片以下述方式来培养90分钟。三次变化缓冲剂,然后倾析去缓冲剂。将组织进行离心(1分钟,3200转/分),并将组织重新悬浮在20毫升克雷伯氏/碳酸氢盐缓冲剂中,然后取出250微升等份(大约2毫克),并放入1.5毫升微量离心管中。从贮备液中向这些管中加入10微升研究用化合物,然后加入10微升NMDA 2.5mM溶液以开始该反应。最终的NMDA浓度是100μm。对比物中不加有NMDA。将试管在振动水浴中在37℃培养1分钟,然后加入750毫升50mMTris-Cl溶液及5mM EDTA溶液以停止该反应。把试管立即放在沸腾的水浴中,历时5分钟,然后使用其功率定在3的探针声波仪对每一试管的内容物进行15秒钟的声处理。取出10微升,利用Lowry的方法(Anal Biochem.100∶201-220,(1979)),测定蛋白质,然后将试管进行离心分离(5分钟。10000×g)。取出100微升上层清液,使用New England Nuclear(波士顿,马塞诸萨州)CGMPRIA,按照仪器提供者的方法,测定环状GMP(CGMP)的含量,该数据以每毫克蛋白质所产生的P摩尔CGMP来表示。
此外,本发明的多胺拮抗兴奋性氨基酸神经传递素的能力,通过按照以下的方法,以在已分离的小脑颗粒细胞中无〔Ca2 〕细胞溶质中对于NMDA/甘氨酸诱导提高的阻滞能力来说以说明。小脑颗粒细胞由8天龄的老鼠(Wilkin,G.P.等人,Brain Res.∶115∶181-199,1976)来制取。将方形(1厘米2)Aclar(Proplastics inc.5033 industrial Ave,Wall,N.Y.07719)用多-L-赖氨酸来涂敷,并将它放入12孔的盘中,该盘含有1毫升Eagles Basal介质。把细胞分离出,将含有6.25×106细胞的等份加入到含有方形Aclar的孔中,在盖上板子24小时后,将胞嘧啶-β-D-阿拉伯呋喃糖苷(最终浓度为10μM)加入其中。在进行6、7和8天培养后,细胞用于进行fura 2分析。该细胞(连在Aclar方块上)被转移到12孔的盘中,该盘含有在HEPES缓冲剂(含有0.1%牛血清蛋白,0.1%右旋糖,pH为7.4,不含镁)中的1毫升2μm fura 2/AM(Molecular Probes Inc.,Eugene OR 97402)。该细胞在37℃培养40分钟。除去含fura 2/AM的缓冲剂。再补充不含fura 2/AM的1毫升相同缓冲剂。向一个石英小杯中加入2.0毫升预热(37℃)缓冲剂。在Aclar上的细胞被放置在该小杯中,该小杯插入一恒温器(37℃),而该恒温器装有磁性搅拌器,并且用萤光分光光度计(Biomedical Instrument group,宾夕法尼亚大学)测量萤光。让萤光信号稳定大约2分钟的时间。
用萤光的增大来表示的无钙细胞溶质的增加,是通过加入50μM的NMDA和1μM赖氨酸而产生的。然后再将在适宜浓度磷酸盐-缓冲盐水(PBS,pH7.4)中的5至20微升供研究用的化合物的贮备液加入到该小杯中。使用Grykiewicz,G.等人所建立的方法(J.Biol.Chem.260∶3440(1985))进行萤光信号的校准和fura 2/AM的泄漏校正。在完成每一试验后,加入离子霉菌素(35μM),测定最大的萤光值(Fmax)。随后将EGTA(12μM)加入把钙螯合,以测定最小的萤光值(Fmin)。使用上述方法,加入本课题化合物后萤光值的降低表现明了本课题的化合物在拮抗兴奋性氨基酸神经传递素上的能力。
本发明的多胺本身在拮抗兴奋性氨基酸神经传递素上是有用的。就这一点来说,该多胺在控制有害无脊椎动物方面,在治疗哺乳动物的兴奋性氨基酸神经传递素引起的疾病和病况例如中风、大脑局部缺血,神经变性机能失调(如Alzheimer疾病)和癫痫等方面是有用的。该多胺在哺乳动物中作为精神治疗剂也有用。此外,该多胺在研究细胞,包括但是不限于神经系统的细胞的生理学方面,也是有用的。
本发明多胺的药物上可接受的盐也被包括在本发明的范围内。这类盐可以使用本技术领域熟练人员公知的方法来制得。例如,按照通常的方法可以制备多胺的酸加成盐。多胺的酸加成盐例如其盐酸或三氟乙酸的酸加成盐是优选的,而特别优选的则是多胺的盐酸加成盐,当本发明的药物上可接受的盐的多胺,用于哺乳动物时可单独使用,或者按照标准药物实施方法,与药物组合物中的药物上可接受的载体或稀释剂结合使用。该多胺或其药物上可接受的盐可以口服给药,或非肠胃给药。非肠胃给药包括静脉、肌肉、腹膜,皮下及局部给药。
为口服使用本发明的多胺或其药物上可以接受的盐,可以例如片剂或者胶囊,或者以水溶液或悬浮液的形式来使用。在以片剂口服使用时,常加入通常使用的载体。此载体包括乳糖和玉米淀粉,以及润滑剂如硬脂酸镁等。在以胶囊形式用于口服给药时,有用的稀释剂是乳糖和干燥的玉米淀粉。当需要含水悬浮液作为口服使用时,该有效成份与乳化剂和悬浮剂合在一起。如果需要,可以加入某些增甜剂和/或香味剂。
用于肌肉,腹膜,皮下和静脉时,通常制成有效成份的无菌溶液,而且溶液的pH值应该适当地调节和缓冲。为了静脉使用,应控制溶质总浓度,使得该制剂是等渗的。
当本发明的多胺或其盐用于人体时,每天的剂量一般要由开处方医生来确定。不过,本发明的多胺的适宜剂量是1~30毫克/公斤/天。此外,剂量应按每一个患者的年龄、体重和敏感性,以及患者病状的严重性和被服用的特殊化合物的效能等来加以变化。因此,可能会超出上述给出的范围,但却是在本发明的范围内的。
当本发明的多胺或其盐被用来控制有害的无脊椎动物时,该化合物可直接用于该无脊椎动物,或提供给该无脊椎动物的环境,例如,本发明的某些化合物可以以溶液喷到该无脊椎动物上。控制无脊椎动物所需要的化合物数量,将按照该无脊椎动物及环境条件而变化,而且根据使用此化合物的人来加以确定。
当本发明的多胺或其盐被用在细胞的生理学研究时,按照本技术领域熟练人员公知的方法,将该化合物给细胞服用。例如,该化合物可以在适当的生理学缓冲剂中给细胞服用。本发明的化合物用于这种研究的适宜浓度是100μM。然而,在这类研究中,该化合物的浓度可以大于或大大地小于100μM。服用化合物数量将按照熟知的方法由本技术领域的技术熟练人员来加以确定。
实施例实验中存在的制法类型(A)用重碳酸二-特丁酯保护仲胺(B)伯胺的氰乙基化反应(C)腈类催化氢化生成伯胺(D)生成酰胺键的反应(D1)二甲氨丙基、乙基碳化二亚胺/羟基苯并三唑(D2)二环已基碳化二亚胺/羟基苯并三唑(D3)二甲氨丙基,乙基碳化二亚胺/羟基苯并三唑/三乙基胺(D4)二环已基碳化二亚胺/羟基琥珀酰亚胺(E)在二噁烷中用HCl使N-Boc基质脱保护(F)用TFA(三氟乙酸)使N-Boc基质脱保护
(G)用N-Boc-3-溴丙胺使胺烷基化实施例1.制备H2N〔(CH2)3NH〕x多胺侧链步骤1.制法类型B
将103克1.3-二氨基丙烷,在4℃,在搅拌下,与45毫升MeOH相混合。通过压力平衡加料漏斗在90分钟内,将丙烯腈(100毫升,81克,1.1当量)滴加到该溶液内。三小时以后,取出500毫克的一份,用13CNMR进行评估;没有观察到1.3-二氨基丙烷。将含有产物氨基腈8的粗物料在减压下进行蒸馏。在蒸馏的100~125℃温度范围内,收集三个馏份,三个馏份均足够清亮以进行与重碳酸二-特丁酯的反应,并且随之用硅胶色层分离方法进行纯化。
1H NMR(250MHz,CDCl3)δ2.67(t,2H,J=6.6Hz),2.54-2.43(m,4H),2.28(t,2H,J=6.6Hz),1.37(m,2H,J=6.7Hz),1.05(s,3H);13C NMR(63.1MHz,CDCl3)δ118.8,46.9,44.9,40.2,33.4,18.5.
步骤2.制备类型A
向在0℃的500毫升二氯甲烷中的氨基腈8(23克,0.18摩尔)的溶液中加入重碳酸二-特丁酯(80克,0.36摩尔,2当量)。将该反应混合物在室温下搅拌16小时,并且用另外的重碳酸二-特丁酯(8克,0.036摩尔)进行处理。在再搅拌4小时之后,将该反应物用1N KOH(2×60毫升)进行洗涤,在K2Co3上干燥。过滤并真空浓缩。将产品用快速色层法(SiO2,在已烷中的20→100%乙酸乙酯),制得清亮的油状物N-Boc-腈(14克,收率为24%)1H NMR(250MHz,CDCl3)δ3.40(t,2H,J=6.7Hz),3.28(t,2H,J=6.6Hz),3.05(bs,2H),2.63-2.46(m,2H),1.70-1.56(m,2H),1.42(s,9H),1.38(s,9H);13C NMR(63.1MHz,CDCl3)δ155.8,155.1,118.5,80.7,78.9,45.7,44.4,43.4,32.4,28.3,28.2.
步骤3.制法类型C
将N-Boc-腈9(40克,0.4摩尔),1000毫升乙酸和20克(20重量% Pd(OH)2)Pd(OH)2/C,放入2.6升镍铬铜耐蚀合金振动瓶中,该瓶用氢气充灌至50磅/英寸2并摇动4小时。该反应物通过0.47微米的滤纸进行过滤,并在真空下进行浓缩。将残留物溶解在1.5升CH2Cl2中,并用1N KOH(2×200毫升)洗涤。底层用CH2Cl2(400毫升)进行萃取;将CH2Cl2层合并,在K2Co3上干燥,过滤,并真空浓缩,得到N-Boc胺11,一种清亮的无色油状物(43克,收率86%)1H NMR(250MHz,CDCl3)δ3.28-3.12(m,2H),3.11-3.00(m,4H),2.64(t,2H,J=7Hz),1.65-1.50(m,4H),1.42(s,9H),1.38(s,9H);13C NMR(63.1MHz,CDCl3)δ155.8,79.3,78.5,44.0,43.4,39.2,32.3,31.6,28.5,28.2.
步骤4.制法类型B
将38克N-Boc-胺11(0.114摩尔)样品与在60毫升甲醇中的6.7克丙烯腈(0.126摩尔,1.1当量)相混合,并搅拌11小时。除去溶剂,得到43克(100%的收率)的清亮无色油状物腈12。此产品不必再进行纯化即可使用。
1H NMR(250MHz,CDCl3)δ3.18(bs,4H),3.03(m,2H),2.85(t,2H,J=6.6Hz),2.57(t,2H,J=6.7Hz),2.45(t,2H,J=6.7Hz),1.72-1.53(m,4H),1.41(s,9H),1.38(s,9H);13C NMR(63.1MHz,CDCl3)δ155.9,118.6,79.6,78.9,46.3,45.0,43.9,37.4,28.8,28.3,18.6.
步骤5.制法类型A
将93克上述制备的腈12(0.114摩尔)样品与重碳酸二-特丁酯(25.6克,0.120毫摩尔,1.05当量)和350毫升CH2Cl2在0℃下相混合,并搅拌9小时,薄层色层法(TLC)(EtOAc,KMnO4)表明不存在原料;反应物以与N-Boc-腈9相同的方法进行纯化,收集到清亮、无色油状物N-Boc-腈13(34克,收率为63%)。
1H NMR(250MHz,CDCl3)δ3.45(t,2H,J=6.6Hz),3.39-2.97(m,8H),2.68-2.46(2,2H),1.82-1.56(m,4H),1.44(s,18H),1.87(s,9H);13C NMR(75.7MHz,CDCl3)δ155.9,80.5,79.7,78.9,46.5,44.5,43.9,37.6,28.4,28.3,16.9。
步骤6.制法类型C
按照与由N-Boc-腈9制备N-Boc胺11的相同方法,由N-Boc-腈13制备N-Boc胺14,其收率为99%(30克)。
1H NMR(300MHz,CDCl3)δ3.32-2.94(m,10H),2.62(t,2H,J=6.7Hz),1.76-1.52(m,6H),1.39(s,18H),1.37(s,9H),1.25(s,2H);13C NMR(63.1MHz,CDCl3)δ155.5,79.5,79.3,45.5-43.7,39.1,37.3,32.3,28.3.
步骤7.制法类型B
按照由N-Boc胺11制备腈12的方法,用N-Boc-胺14制备腈15,收率为90%。
1H NMR(300MHz,CDCl3)δ3.29-3.02(m,14H),2.86(t,2H,J=6.7Hz),2.57(t,2H,J=6.6Hz),2.46(t,2H,J=6.6Hz),1.72-1.57(m,6H),1.41(s,9H),1.40(s,9H),1.39(s,9H);13C NMR(75.7MHz,CDCl3)δ155.5,155.0,118.7,79.6,79.5,46.7-46.0,45.2-43.3,38.0-36.9,28.4,18.7.
腈15的13CNMR(300MHz,CDCl3)与腈12的难以区分。
步骤8.制法类型A
按照由腈12制备N-Boc腈13的方法,由腈15制备清亮、无色油状物N-Boc腈16(30克,收率为87%)。
1H NMR(300MHz,CDCl3)δ3.36(t,2H,J=6Hz),3.18-2.90(m,14H),2.57-2.42(m,2H),1.72-1.48(m,6H),1.40-1.28(m,27H).
步骤9.制法类型C
按照由N-Boc-腈9制取N-Boc-胺11的方法,由N-Boc-腈16制备N-Boc-胺17,其收率为74%(2.61克)1H NMR(250MHz,CDCl3)δ3.39-2.97(m,14H),2.63(t,2H,J=6.6Hz),1.80-1.53(m,8H),1.39(s,27H),1.38(s,9H),1.239(s,2H).
步骤10.制法类型B
按照N-Boc-胺11制备腈12的方法,由N-Boc-胺17制备腈18,产率91%(19克)。它不必再提纯即可使用。
1H NMR(300MHz,CDCl3)δ3.24-2.94(m,14H),2.87(t,2H,J≈6Hz),2.57(t,2H,J≈6Hz),2.47(t,2H,J≈6Hz),1.74-1.54(m,8H),1.45-1.36(m,36H).
步骤11.制法类型A
按照由腈12制备N-Boc-腈13的方法,由腈18制备N-Boc-腈19(得16g,收率74%)。
1H NMR(250MHz,CDCl3)δ3.43(t,2H,J=6.6Hz),3.28-3.02(m,16H),2.62-2.50(m,2H),1.80-1.56(m,8H),1.43(s,9H),1.42(s,9H),1.41(s,18H),1.39(s,9H).
步骤12.制法类型C
按照由N-Boc-腈9制备N-Boc-胺11的方法,用N-Boc-腈19制备N-Boc-胺20(得17克,收率99%)1H NMR(300MHz,CDCl3)δ3.24-2.95(m,18H),2.6(t,2H,J≈6H),1.72-1.52(m,10H),1.42-1.32(m,45H).
步骤13.制法类型B
按照由N-Boc-胺11制备腈12的方法,由N-Boc-腈20制备腈21,其收率为99%。
1H NMR(250MHz,CDCl3)δ3.32-3.03(m,16H),2.91(t,2H,J=6.7Hz),2.61(t,2H,J≈6Hz),2.51(t,2H,J=6.6Hz),1.82-1.57(m,10H),1.44(s,36H),1.43(s,9H).
步骤14.制法类型A
按照由腈12制备N-Boc腈13的方法,由腈21制备N-Boc-腈22,其收率为99%。
3.45ppm(t,2H,J=6.6Hz),3.26-3.02(m,18H),2.65-2.53(m,2H),1.79-1.55(m,10H),1.43(s,9H),1.42(s,9H),1.41(s,18H),1.40(s,9H);13C NMR{1H}(250MHz,CDCl3)δ155.2,79.3,44.7,28.3,28.3,28.2.
步骤15.制法类型C
按照由N-Boc-腈9制备N-Boc胺11的方法,由N-Boc-腈22制备N-Boc-胺23(得8克,收率99%)。
1H NMR(300MHz,CDCl3)δ3.32-2.98(m,22H),2.65(t,2H,J=6.6Hz),1.78-1.53(m,12H),1.41(s,54H),1.40(s,9H).
步骤16.制法类型B
按照由N-Boc-胺11制备腈12的方法,由N-Boc-胺23制备腈24,收率为99%。
1H NMR(250MHz,CDCl3)δ3.32-.304(m,22H),2.90(t,2H,J=6.7Hz),2.61(t,2H,J≈6Hz),2.53(t,2H,J=6.7Hz),1.82-1.57(m,12H),1.44(s,45H),1.43(s,9H).
步骤17.制法类型A
按照由腈12制备N-Boc-腈13的方法,由腈24制备N-Boc-腈25(得5.5克 收率74%)。
1H NMR(250MHz,CDCl3)δ3.45(t,2H,J≈6.7Hz),3.40-2.97(m,24H),2.66-2.51(m,2H),1.80-1.55(m,12H),1.54-1.30(s,63H).
步骤18.制法类型C
按照由N-Boc-腈9制备N-Boc胺11的方法,由N-Boc-腈25制备N-Boc-胺26(5.01克,收率91%)。
1H NMR(250MHz,CDCl3)δ3.30-2.97(m,26H),2.60(t,2H,J=6Hz),1.81 1.57(m,14H),1.53-1.28(m,63H),13C NMR(250MHz,CDCl3)δ155.2,79.3,44.7,28.7,28.4,27.5.
实施例2
步骤1.形成酰胺键-制法类型D1在50毫升单颈圆底烧瓶中,在干燥的氮气氛下,在搅拌下混合0.19克二茂铁羧酸(0.82毫摩尔、1.1当量),0.12克羟基苯并三唑(0.89毫摩尔,1.2当量),0.17克1-(3-二甲基氨丙基)-3-乙基碳化二亚胺(HCl盐,0.90毫摩尔,1.2当量)及10毫升CH2Cl2。30分钟之后,将0.61克N-BOC-胺27(0.75毫摩尔,1.0当量,见本文制备方法中的实施例5a)加入到溶液中,2小时之后,TLC(2×MeOH,I2)表明,N-BOC-胺已经消耗完毕。将反应物用EtOAc稀释至400毫升,用pH的缓冲剂(2×25毫升),25毫升H2O,1N·KOH(2×25毫升),25毫升H2O和50毫升盐水进行洗涤。此EtOAc层在Na2SO4上进行干燥。过滤,除去溶剂,得到712毫克(93%)的橙色油状产品。
1H NMR(250MHz,CDCl3)δ4.78(s,2H),4.32(t,2H,J=1.8Hz),4.19(s,5H),3.45-3.04(m,20H),1.83-1.59(m,12H),1.50(s,9H),1.45(s,18H),1.44(s,9H),1.43(s,9H).
步骤2.多胺的脱保护作用-制法类型F在一个0℃的100毫升单颈圆底烧瓶中,将三氟乙酸(30毫升)用干燥的N2、气泡流(通过聚四氟乙烯管)进行脱气。把上述步骤1的二茂铁甲酰胺多胺(712毫克,0.69毫摩尔)溶解在2毫升CH2Cl2中,并转移到搅拌中的TFA(三氟乙酸)中,容器用3×2毫升CH2Cl2冲洗。30分钟后,除去冰浴。30分钟后,先在减压下然后在高真空下除去溶剂。残留的微红棕色油状物与Et2O(2×30毫升)一起捣碎,生成一种黄色固体。在N2正压存在下收集在多孔的“B”玻璃料上,该固体用乙醚淋洗,在N2正压下把残留的乙醚除去,得到690毫克(93%收率)的固体产品。
1H NMR(DMSO)δ4.71(t,2H,J=1.73Hz),4.38(t,2H,J≈2Hz),4.15(s,5H),3.28-3.21(m,2H),3.03-2.81(m,18H),2.04-1.72(m,8H),1.61-1.50(m,4H);13C NMR(250MHz,D2O)177.3,78.5,76.1,74.3,49.7,48.1,47.3,47.2,47.1,39.3,38.8,28.5,26.5,25.5,25.4.
其HPLC纯度为不小于96.08%,Novapak C18柱,5-40%的CH3CN/2%/T·H2O,时间为60分钟,在230nm处测定。洗脱时间23.2分钟。HRMS(FAB)(M H),以C27H48N6O计算为529.3328845,实测值为529.33172。
实施例3
步骤1.酰胺键的生成-制法类型D3将2-吡啶乙酸的盐酸盐(0.105克,0.60毫摩尔,1.0当量)与0.16毫升TEA(1.15毫摩尔,2当量)及4毫升CH2Cl2相混合,十分钟之后,加入DEC(0.12克,0.62摩尔,1.0当量)和0.09克HOBt(0.66毫摩尔,1.1当量),将该混合物搅拌2小时,加入N-BOC-胺27(0.44克,0.54毫摩尔,0.9当量),并将反应物再搅拌10小时,TLC(2×MeOH,I2)检测表明,N-BOC-胺已经消耗掉。将反应物用EtOAc稀释至400毫升,用1N KOH(40毫升),盐水(50毫升)洗涤,并在MgSO4上进行干燥。将EtOAc溶液过滤,除去溶剂,得到0.4克清亮的绿色油状物。将粗制品在硅胶-EtOAc浆上进行色层分离,用EtOAc作为洗脱剂。把适当的组分合并到一起,除去溶剂,得到0.20克(收率40%)清亮、淡绿色油状物。
1H NMR(250MHz,CDCl3)δ8.59-8.52(m,1H),7.76-7.68)(m,1H),7.62-7.49(m,1H),7.37(d,1H,J=8Hz),3.78(s,2H),3.31-3.02(m,20H),1.80-1.56(m,12H),1.56-1.34(m,45H).
步骤2.多胺脱保护作用-制法类型F在室温下,在一个100毫升单颈圆底烧瓶中,将三氟乙酸(30毫升)用干燥的N2气泡流(通过聚四氟乙烯管)进行连续脱气。将上述步骤1中的2-吡啶乙酰胺(180毫克)溶解于2毫升CH2Cl2中,并转移到搅拌中的TFA中。一小时之后,在减压下除去溶剂,并将残余物置于高真空中。将残余物与乙醚(2×30毫升)一起进行捣碎,生成一白色固体,并在N2正压下将其收集在多孔的“B”玻璃料上。残余的乙醚用N2正压加以除去;分离出169毫克(收率91%)的产品。
1H NMR(250MHz,D2O)δ8.48(d,1H,J=15Hz),7.98(t,1H,J=6Hz),7.51-7.47(m,2H),3.86(s,2H),3.32(t,2H,J≈9Hz),3.17-2.96(m,18H),2.17-1.98(m,6H),1.98-1.81(m,2H),1.81-1.69(m,4H).
实施例4
步骤1.酰胺键生成-制法类型D4将4-二苯基乙酸(53毫克,0.25毫摩尔,1.2当量)与5毫升CH2Cl2,84微升三乙胺(0.6毫摩尔,3当量),70毫克二环己基碳化二亚胺(0.34毫摩尔,1.6当量),11毫克N-BOC-胺27(0.21毫摩尔,1.0当量)相混合。TLC(2×MeOH,KMnO4)表明,于16小时之后,此N-BOC-胺已经消耗完毕,将反应物用CH2Cl2稀释至100毫升,并用20%NH4OH水溶液(2×100毫升)洗涤。底层用CH2Cl2萃取(3×50毫升)。将所有的CH2Cl2部分都混合在一起,然后用盐水(50毫升)洗涤,在K2CO3上加以干燥。过滤,除去溶剂,得到281毫克(>100%收率)的粗产品。通过快速硅胶色层法(12克,在CH2Cl2中的浆料,并用0-10%梯度的MeOH/CH2Cl2来洗脱)分离出白色、蜡状固态物纯产品(190毫克,88%收率)1H NMR(250MHz,CDCl3)δ7.56-7.50(m,4H),7.43-7.28(m,5H),3.56(s,2H),3.26-2.98(m,20H),1.78-1.52(m,12H),1.48-1.36(m,45H).
步骤2.多胺脱保护作用-制备类型F在0℃下,用N2气泡流连续将三氟乙酸(30毫升)脱气(通过四氟乙烯管)。将上面步骤1的二苯基乙酰胺(150毫克,0.15毫摩尔)以干的粉末状物加入到该搅拌中的TFA中。40分钟后,撤去冰浴;再搅拌20分钟之后,所得到的棕黄色油状物与Et2O(3×30毫升)一起捣成浆状;形成一白色固体物,在N2正压下收集在多孔的“C”玻璃料上。将此固体溶于水中,通过该玻璃料加以漂洗,并冷冻干燥,得到白色固态产品136毫克(收率为99%)1H NMR(300MHz,D2O)δ7.62-7.56(m,5H),7.4(t,2H,J=7.5Hz),7.38-7.31(m,2H),3.45(s,2H),3.13(t,2H,J=6.7Hz),3.02-2.80(m,18H),2.00-1.54(m,12H).
实施例5 1H-吲哚-3-乙酰胺-N-〔16-氨基-4,8,13-三氮十六碳烷-1-基)步骤1按照Yamamoto,Hisashi所公开的方法,见J.Am.Chem.Soc.1036133-6136(1981),由二氨基丁烷和丙烯腈来制备式1的化合物。
在氮气氛下,向N-氰乙基-1,4-二氨基丁烷(6.44克,0.0457毫摩尔)在乙腈(200毫升)中的溶液加入KF/Celite(11克),随后,在7小时内滴入N-(特-丁氧基羰基)-3-溴代丙胺(10.87克,0.0457摩尔)、该反应物在环境温度下搅拌16小时,然后加热至70℃,反应24小时,将反应物冷却并过滤,并在真空下浓缩。把残余物溶于CH2Cl2(200毫升)中,用1N NaOH(100毫升)洗涤,干燥并在真空下浓缩,制得粗产品,该产品用硅胶进行色层纯化(使用9∶1CH2Cl2/MeOH),得3.32克胺Ⅲ。
1H NMR(CDCl3)δ1.19-1.59(m,17H),2.42(t,J=6.6Hz,2H),2.44-2.58(m,6H),2.82(t,J=6.6Hz,2H),3.08(m,2H),5.22(br s,1H);13C NMR(CDCl3)δ18.68,27.70,27.74,28.42,29.94,39.16,45.03,47.68,48.99,49.65,78.78,118.75,156.11;HR FABMS实测值(M H)m/z=299.2434,C16H31N4O2(需299.2447).
步骤3
在氮气氛下,将在上面步骤2中所述制备的式Ⅲ化合物4.7克(15.8毫摩尔)溶解在150毫升二氯甲烷中,然后加入7.56克(34.7毫摩尔)的焦碳酸二-特丁基酯,并将此反应混合物在室温下搅拌过夜。然后将该混合物在真空下浓缩,并在400克硅胶上进行色层分离,以50∶50乙酸乙酯/己烷作溶剂。用TLC(50∶50乙酸乙酯/己烷)监控各级分。将含有Ⅳ产物的反应物合并,在真空下浓缩,得到7.9克油状产物。
1H NMR(CDCl3)δ1.20-1.59(m,33H),2.55(m,2H),3.01-3.37(m,8H),3.39(t,J=6.6Hz,2H),5.25(br s,1H);13C NMRδ17.21,25.73,25.94,28.22,28.24,28.27,37.91,43.78,44.24,46.60,47.95,78.96,79.57,80.44,155.01,155.75,155.98;HR FABMS实测值(M H)m/z=499.3501,C25H47N4O6(需499.3496).
步骤4
在氮气氛下,向125毫升乙酸中加入7.85克(15.8毫摩尔)按上面步骤3所述制得的式Ⅳ化合物和6.5克Pd(OH)2/碳。该混合物在50磅/英寸2下氢化2小时,过滤除去催化剂。用乙酸很好地洗涤滤饼。将滤液加以浓缩。除去250毫升二氯甲烷。用100毫升1N NaOH洗两次,并在K2CO3上干燥。将溶液过滤,滤液真空浓缩,得到7.8克式Ⅴ的化合物。
1H NMR(CDCl3)δ1.24-1.59(m,35H),2.14(s,2H),2.61(t,J=6.7Hz,2H),2.98-3.14(m,10H),5.22(br s,1H);13C NMR(CDCl3)δ25.89,28.42,31.38,32.36,37.55,38.95,43.95,46.65,79.34,79.48,155.65,156.03;HR FABMS。实测值(M H)m/z=503.3804,C25H61N4O6(需m/z=503.3809).
步骤5
在氮气氛下,将按步骤4所述方法而制得的7.15克(14.2毫摩尔)式Ⅴ化合物溶解在150毫升甲醇中,然后将1.03毫升(15.6毫摩尔)的丙烯腈加入其中。在室温下反应物搅拌72小时,然后将反应混合物浓缩,加入二氯甲烷,再浓缩三次,真空除去溶剂。得到油状式Ⅵ产品7.65克。
1H NMR(CDCl3)δ1.26-1.73(m,36H),2.44(t,J=6.7Hz,2H),2.54(t,J=6.7Hz,2H),2.83(t,J=6.7Hz,2H),3.00-3.16(m,10H),5.24(br s,1H);13C NMR(CDCl3)δ18.64,25.84,28.09,28.43,28.74,37.84,44.18,44.68,45.14,46.29,46.73,46.85,49.70,78.90,79.29,79.46,118.52,155.84,155.98;HR FABMS实测值(M H)m/z=556.4064,C28H54N5O6(需m/z=556.4074).
步骤6
在氮气氛下,将按照步骤5所述的方法而制备的6.45克(11.6毫摩尔)的式Ⅵ化合物溶解在125毫升二氯甲烷中,向该溶液中加入2.6克(12毫摩尔)的焦碳酸二-特丁酯,并将反应混合物在室温下搅拌过夜,然后真空浓缩该混合物,并在400克硅胶上进行色层纯化,以50∶50乙酸乙酯/己烷洗脱。将产品级分合并浓缩,得到油状的式Ⅶ产物6.6克。
1H NMR(CDCl3)δ1.26-1.73(m,44H),3.03-3.24(m,14H),3.42(t,J=6.6Hz,2H),5.25(br s,1H);13C NMR(CDCl3)δ17.20,25.88,27.83,28.12,28.35,28.45,28.77,37.87,43.91,44.20,44.77,46.27,46.88,78.94,79.42,79.50,80.54,117.91,154.96,155.44,155.74,155.99;HR FABMS实测值(M H)m/z=656.4579,C33H62N5O8(需m/z=656.4598)。
步骤7
在氮气氛下,向150毫升的乙酸中加入6.6克(10.1毫摩尔)按上面步骤6所述制备的式Ⅶ化合物和6克Pd(OH)2/碳。将混合物在50磅/英寸2下氢化2小时,过滤除去催化剂,滤饼用乙酸很好地洗涤。将滤液浓缩,除去200毫升二氯甲烷,用100毫升1N NaOH洗涤,并在K2CO3上干燥。将溶液过滤,滤液真空浓缩,得到式Ⅷ产品6.5克。
1H NMR(CDCl3)1.28-1.71(m,46H),2.16(br s,2H),2.65(t,J=6.7Hz,2H),3.01-3.18(m,14H),5.24(br s,1H);13C NMR(CDCl3)δ25.85,27.66,28.45,28.76,39.10,44.21,44.91,46.80,79.27,79.46,155.41,155.67,155.99;HR FABMS 实测值(M H) m/z=660.4914,C33N66N5O8(需660.4911)。
步骤8
在氮气氛下,将1.75克(10毫摩尔)的吲哚乙酸1.15克(10毫摩尔)N-羟基琥珀酰亚胺及2.06克(10毫摩尔)二环已基碳化二亚胺加入到75毫升的四氢呋喃中,将反应混合物在室温下搅拌。在大约5分钟之后,生成沉淀。约1.5小时后,滤去沉淀,用75毫升四氢呋喃将滤饼洗涤。把滤饼进行空气干燥,得到1.84克产品。将合并的滤液浓缩,除去醋酸乙酯,过滤,用乙酸乙酯洗涤,滤液浓缩得到泡沫状物。把泡沫状物与75毫升乙醚一起研磨,得到一坚硬的胶状物。以过滤的办法来分离固体,用乙醚洗涤,在氮气氛下干燥,得到1.74克式Ⅸ的产品。已经发现,用石油醚处理母液,还可以再得到0.47克产品。
步骤9
在氮气氛下,将如上面步骤7中所述制备的0.33克(5毫摩尔)式Ⅷ化合物,在搅拌下溶于10毫升二氯甲烷中,然后加入如上述步骤8中所制备的0.136克(5毫摩尔)式Ⅸ化合物。该反应在室温下搅拌过夜,然后用二氯甲烷将反应混合物稀释至35毫升,以10毫升0.5N NaOH来洗涤,在K2CO3上干燥并浓缩。该浓缩物在硅胶上进行色层分离,以4∶1醋酸乙酯/己烷作洗脱剂。把产品级分浓缩,得到0.37克含有式Ⅹ的产品和存在某些醋酸乙酯的泡沫体。
步骤10
在氮气氛下,将上述步骤9中所制备的0.37克(0.45毫摩尔)式Ⅹ的化合物溶解于10毫升二氯甲烷中,然后加入0.218克(1毫摩尔)焦碳酸二-特丁酯,随后加入12毫升(0.1毫摩尔)4-(N,N-二甲氨基)-吡啶。把反应物在室温下搅拌1小时,然后让其放置过夜。将反应混合物在硅胶进行色层分离,用4∶1的醋酸乙酯/己烷为洗脱剂,将该产物级分浓缩,得到0.32克白色泡沫状式Ⅺ产物。
步骤11
在氮气氛下,将0.32克(0.35毫摩尔)如上面步骤10所述制备的分子式Ⅺ化合物加入到15毫升三氟乙酸中,并搅拌15分钟。然后将反应混合物真空浓缩,并与乙醚研磨,得到0.30克白色粉末状产物。
按照相似方法制备具有下列结构的N-Boc-胺27
进行上述的步骤1至7,得到式Ⅷ的N-Boc胺。
步骤8a
按照由N-Boc胺Ⅴ制备腈Ⅵ的方法(实施例5,步骤5),由N-Boc胺Ⅷ制备腈ⅩⅢ,得到1.00克产物(收率93%)1H NMR(CDCl3)δ1.26-1.66(m,47H),2.45(t,J=6.6Hz,2H),2.56(t,J=6.7Hz,2H),2.85(t,J=6.6Hz,2H),3.01-3.30(m,14H),5.25(br s,1H);13C NMR(CDCl3)δ18.68,25.92,28.46,28.48,37.49,44.19,44.88,45.16,46.73,78.93,79.32,79.44,118.70,155.46,155.61,156.04;HR FABMS 实测值(M H)m/z=713.5191,C36H69N6O8(需m/z=713.5177)。
步骤9a
采用方法A,通过胺保护法,由腈ⅩⅢ制备N-Boc腈ⅩⅣ。
步骤10a按照由N-Boc腈Ⅶ制备N-Boc胺Ⅷ的方法(本实施例中的步骤7),由N-Boc腈ⅩⅣ的氢化反应制备N-Boc胺27。
实施例6和7先利用制法D1,随之利用制法F,用多胺20和适当的R-乙酸(m=1)或R-羧酸(m=0)为原料,制备结构为R(CH2)mCO〔NH(CH2)3〕5NH2·5TFA的化合物。
实施例 m R6 0 二茂铁7 1 3-吲哚实施例8至29用下列方法,以多胺27和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕3NH(CH2)4NH(CH2)3NH2·5HCl(由制法E)或者R(CH2)mCO〔NH(CH2)3〕3NH(CH2)4NH(CH2)3NH2·5TFA(由制法F)
结构的化合物。
实施例 m R 制法8 0 二茂铁 D1,然后F9 0 2-吡啶 D3,然后F10 0 3-吡啶 D3,然后F11 0 4-吡啶 D3,然后F12 1 2-吡啶 D3,然后F13 1 3-吡啶 D3,然后F14 1 4-吡啶 D3,然后F15 0 2-喹啉 D1,然后F16 0 3-喹啉 D2,然后F17 1 3-吲哚 D1,然后F18 1 3-(5-羟基吲哚) D2,然后F19 1 3-(4-羟基吲哚) D2,然后F20 1 3-(5-溴吲哚) D2,然后F21 1 3-(4-氟吲哚) D2,然后F22 0 2-(5-氟吲哚) D2,然后F23 1 2-(5-氟吲哚) D2,然后F24 1 3-(5-甲氧基吲哚) D2,然后F25 0 2-喹喔啉 D2,然后F26 0 氢醌 D2,然后F27 0 4-间苯二酚 D2,然后F28 1 对-联苯 D4,然后F29 1 2-萘 D2,然后F
实施例30和31先用制方D1,然后用制法F,以多胺17和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕4NH2·4TFA结构的化合物。
实施例 m R30 0 二茂铁31 1 3-吲哚实施例32和33先用制法D1,然后用制法F,以多胺14和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕3NH2·3TFA结构的化合物。
实施例 m R32 0 二茂铁33 1 3-吲哚实施例34和35先用制法D1,后用制法F,以多胺11和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕2NH2·2TFA结构的化合物。
实施例 m R34 0 二茂铁35 1 3-吲哚实施例36和37先用制法D1,后用制法F,以多胺7和合适的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCONH(CH2)3NH2·TFA结构的化合物。
实施例 m R36 0 二茂铁37 1 3-吲哚实施例38和39先用制法D1,后用制法F,以多胺23和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕6NH2·6TFA结构的化合物。
实施例 m R38 0 二茂铁39 1 3-吲哚实施例40和41先用制法D1,后用制法F,以多胺26和适当的R-乙酸或R-羧酸为原料,制备具有R(CH2)mCO〔NH(CH2)3〕7NH2·7TFA结构的化合物。
实施例 m R40 0 二茂铁41 1 3-吲哚制备A在氮气氛下,将溶在600毫升N,N-二甲基甲酰胺中的34.5克(157.6毫摩尔)3-溴代丙胺。HCl加以搅拌,向该溶液中加入34.4克(157.6毫摩尔)焦碳酸二特丁酯,随后加入32.3毫升(236毫摩尔)三乙胺,立即生成沉淀。将该反应物搅拌过夜,然后用乙酸乙酯将反应混合物稀释至1.5升。用500毫升1N HCl洗涤一次,用500毫升水洗涤三次,用盐水洗涤一次,在Na2SO4上进行干燥,浓缩之后,该产品在800克硅胶上用4∶1己烷/乙酸乙酯进行色层分离。级分用己烷/乙酸乙酯进行监控,而且级分用TLC(KMnO4/I2)进行监控。把含有产品的级分合并,真空浓缩,用50毫升二氯甲烷提取两次,并在高真空下除去溶剂,生成25.8克本制备方法的产品。
权利要求
1.一种制备通式R-(CH2)m-COR1化合物的方法,式中R是含有1或两个氮原子的五至七元氮杂环体系或八至十一元氮杂双环体系,或者用1个或多个取代基取代的任一上述体系,该取代基独立地选自F,Cl,Br,OH,C1至C4的烷基,C1至C4的烷氧基,CF3,苯基,氨基,C1至C4的烷氨基及二(C1至C4烷基)氨基;m是0或1;R1是[NH(CH2)n]xNH2;每一个n独立地是2至5;以及x是1至6;其条件是当R是3-吲哚,R1是-[NH(CH2)3]2-NH(CH2)4NH(CH2)3NH2时,那么m是0;该制法包括(a)使通式为R的化合物与通式为BOC-NH(CH2)n[N(Boc)(CH2)n]x-1N(Boc)H的化合物,在反应-惰性溶剂中,在以碳化二亚胺为基础的试剂连同生成酰胺键催化剂的存在下,发生反应,式中Boc代表特丁氧基羰基,而R,n和x的定义如上;及(b)用有机或无机酸进行处理以除去特丁氧基羰基。
2.一种按照权利要求1的方法,其中该以碳化二亚胺为基础的试剂选自二甲氨基丙基,乙基碳化二亚胺及二环己基碳化二亚胺,而该形成酰胺键的催化剂选自羟基苯并三唑和羟基琥珀酰亚胺。
3.一种按照权利要求1或2的方法,其中该反应一惰性溶剂是二氯甲烷,而该有机或无机酸选自三氟乙酸和盐酸。
4.一种按照权利要求1至3之一的方法,式中x是5;而每一个n独立地是3或4。
5.一种按照权利要求1至4之一的方法,式中R是3-吲哚,或用F,Cl,Br,oH或MeoH单取代的3-吲哚,而m是1。
6.一种按照权利要求1至5之一的方法,式中R1是-〔NH(CH2)3〕3-NH(CH2)4-NH(CH2)3-NH2。
全文摘要
具有通式R-(CH
文档编号C07D213/56GK1071915SQ92110870
公开日1993年5月12日 申请日期1992年8月22日 优先权日1991年8月23日
发明者N·A·萨科曼诺, R·A·福克曼 申请人:美国辉瑞有限公司, Nps药物有限公司
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜