一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种非化学计量比氧氮化物纳米粉及其制备方法与流程

2021-10-09 02:33:00 来源:中国专利 TAG:氮化物 制备 高性能 低成本 纳米


1.本发明涉及高性能介电陶瓷材料制备技术领域,尤其涉及一种非化学计量比氧氮化物纳米粉及其低成本制备方法。


背景技术:

2.稀土钙钛矿氧氮化物是近年来国际上受到重点关注的一类新型功能材料。这类氧氮化物是在相对应二元稀土钙钛矿氧化物abox中引入n原子和稀土金属阳离子而得到,常见类型有ab(o,n)3,a2bo3n或a(b,b’)1(o,n)3等,其中a为稀土元素(如la、nd、pr、eu等),b/b’为过渡族金属元素(如ta、ti、nb、mo、zr、w等)。其晶体结构中,b原子通常与o/n原子构成b(o,n)6八面体且b原子位于八面体中心。由于o/n原子的排列方式不同(顺式和反式)以及b(o,n)6八面体的倾斜程度不同,氧氮化物有着不同的晶体结构。
3.由于氮原子电负性与极化性比氧原子高,且根据能带理论,n

2p轨道能级比o

2p高,故氧氮化物中n原子的引入使得其导带和价带之间的带隙(band gap)减小。例如,常见的钙钛矿氧化物的带隙一般高于3.0ev,而其相应的氧氮化物带隙则在1.5ev~2.5ev之间。这种带隙的减小使得材料微观电子结构产生变化,改变了材料的光学特性。同时,由于稀土元素的引入以及o/n分布的多样性,材料也获得了许多新的功能特性。例如,la1‑
x
sr
x
tio
2 x
n1‑
x
室温下有着很高的介电常数;rtio2n(r=ce,pr,nd)、ndvo2n和gdnbon2具有顺磁性;latio2n和rtaon2(r=la,ce,pr)可作为可见光催化剂裂解水制氢。
4.根据材料结构

工艺

性能的关系,制备工艺是稀土钙钛矿氧氮化物材料获得理想微结构及优异综合性能的关键。目前,合成该类氧氮化物粉体的主流方法是先采用固相煅烧、溶胶

凝胶、多元醇共沉淀、水热法等工艺合成包括多种金属阳离子的复合氧化物前驱体,再在流动的氨气气氛中和高温下进行氨化处理。然而,第二步氨化过程中气

固反应扩散缓慢,反应往往只能限制在气

固接触表面,欲提高产率在反应中间需停下来研磨粉体,大大延长了制备时间,因此要进一步探究更加高效的制备及优化工艺。


技术实现要素:

5.本发明要解决的技术问题是克服现有技术的不足,提供一种成本低廉、工艺简单、纯度高、介电常数高的非化学计量比氧氮化物纳米粉及其制备方法。
6.为解决上述技术问题,本发明采用以下技术方案:
7.一种非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
8.(1)将三氧化二铕粉末、五氧化二钽粉末和尿素溶于无水乙醇中,并进行球磨,得到混合浆料;
9.(2)将步骤(1)所得的混合浆料干燥,得到混合前驱体粉末;
10.(3)将步骤(2)所得的混合前驱体粉末在保护气氛中煅烧,得到euta(o,n)3氧氮化物纳米粉;
11.(4)将步骤(3)所得的euta(o,n)3氧氮化物纳米粉在氨气气氛中进行氨化退火处
理,即以1℃/min~50℃/min的升温速率升温至800℃~1500℃,保温1h~24h,再随炉冷却至室温,得到非化学计量比的氧氮化物纳米粉eutao
a
n
b
,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
12.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(1)中,所述三氧化二铕粉末、五氧化二钽粉末、尿素和无水乙醇的比例为1g~5g∶2g~8g∶1g~15g∶5ml~100ml,所述球磨的时间为1h~24h。
13.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(1)中,所述三氧化二铕、五氧化二钽、尿素和无水乙醇的比例为2g~4g∶3g~6g∶2g~10g∶5ml~50ml,所述球磨的时间为2h~12h。
14.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(4)中,所述升温速率为10℃/min~30℃/min,升温至900℃~1400℃,保温1h~12h。
15.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(3)中,所述保护气氛为氮气、氦气和氩气中的一种或多种,所述煅烧的工艺为:以50℃/min~500℃/min的升温速率升温至800℃~1400℃,保温0min~30min,再随炉冷却至室温。
16.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,升温至900℃~1300℃,保温1min~10min。
17.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(2)中,所述干燥的温度为30℃~120℃,所述干燥的时间为1h~72h。
18.上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,所述干燥的温度为50℃~80℃,所述干燥的时间为6h~48h。
19.作为一个总的技术构思,本发明还提供一种非化学计量比氧氮化物纳米粉,所述非化学计量比氧氮化物纳米粉为eutao
a
n
b
,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
20.与现有技术相比,本发明的优点在于:
21.1、本发明提供了一种非化学计量比氧氮化物纳米粉的制备方法,通过将euta(o,n)3氧氮化物在氨气气氛中进行氨化退火处理,得到非化学计量比的氧氮化物纳米粉,这是因为,nh3具有一定的还原性,而直接制备的euta(o,n)3中的eu处于 2和 3之间的中间价态,在氨气退火处理过程中,nh3通过对中间价态eu元素进行还原进而改变样品中的o/n含量,并最终趋于稳定状态。在此过程,样品出现了相变过程,且该过程随着氨化过程的温度与时间逐渐演变,即可通过控制氨化退火工艺的温度与时间进而控制该相变进程。本发明以廉价的尿素为氮源,在较低温度下一步煅烧制备euta(o,n)3氧氮化物,与主流的两步法或一步高温合成法相比成本低、耗时短、操作简便,产物纯度高、介电性能好,且能得到非化学计量比氧氮化物纳米粉体。
22.本发明煅烧时采用特定的尿素含量,混合前驱体粉末中尿素的含量为化学方程式计算的尿素量的2倍~15倍,因此,反应体系中既有反应混合物中尿素提供的固态氮源,同时又有受热分解的尿素提供气态氮源,可大大提高氮化效率。此外,氨气还能有效去除反应混合物中尿素因分解不完全而产生的残碳,大大提高产物氧氮化物的纯度。
23.本发明煅烧混合前驱体粉末时采用了较快的升温速率(50~500℃/min),而传统方法升温速率一般为1℃/min~10℃/min。由于尿素在较低温度下即可发生分解反应,造成氮源提前损失,使反应体系达到生成氧氮化物的较高温度时氮化程度低,产物纯度不高。而
快速升温能从化学动力学上抑制尿素的分解,在保留大量氮源的前提下,使反应体系温度迅速达到氧氮化物生成所需的温度,从而发生充分的氮化反应,大大缩短反应时间并提高产物纯度。
24.2、本发明提供了一种非化学计量比氧氮化物纳米粉,该氧氮化物纳米粉为eutao
a
n
b
,其中,1.5≤a≤2.5,0.5≤b≤1.5,并非传统的化学计量比,此特定的o和n的计量比,使得本发明的氧氮化物纳米粉介电性能好。
附图说明
25.图1为本发明实施例1制得的非化学计量比氧氮化物纳米粉的光学照片及xrd谱图。
26.图2为本发明实施例1制得的非化学计量比氧氮化物纳米粉的磁化率曲线图。
27.图3为本发明实施例1制得的非化学计量比氧氮化物纳米粉的介电特性曲线。
28.图4为本发明实施例1在氨化退火处理过程中样品微观形貌变化的sem照片。
具体实施方式
29.以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
30.实施例1:
31.一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
32.(1)将3g三氧化二铕、3.75g五氧化二钽和5.45g尿素加入到50ml无水乙醇中,并球磨240min,得到混合浆料;
33.(2)将步骤(1)所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
34.(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到euta(o,n)3氧氮化物纳米粉;
35.(4)将步骤(3)所得的euta(o,n)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以10℃/min的升温速率升温至为1100℃(退火温度),保温时间为6h,再随炉冷却至室温,经检测,得到的氧氮化物为eutao
1.96
n
1.04

36.本实施例的非化学计量比氧氮化物纳米粉的物相组成及微观形貌分别如图1至图4所示:由图1可知,其物相几乎为纯相euta(o,n)3(含量99.8%),颜色为黑色,且产物形态大小均匀,晶粒尺寸约50nm~100nm。如图2、图3所示,本实施例制备的euta(o,n)3氧氮化物有较高的介电常数15845,样品的磁化率在10k~300k温度范围内遵循curie

weiss定律,对应方程为:χ=7.75/t

3.32,有效磁矩为7.82μb。由图4可看出,在氨化退火处理过程中,样品的微观形貌先由原始样品的规则且均匀的立方体颗粒转变为边界较为圆润的立方体颗粒,然后由立方体逐渐转变为不规则圆球状颗粒,且在该过程中出现明显的晶粒融合现象,最后又重新分散出现不规则多面体状颗粒。整个变化过程中样品的颗粒度及其分布未出现明显变化,根据其形貌变化过程,可以推断在氨化退火过程中,样品出现了相变过程,且该过程随着氨化过程的温度与时间逐渐演变,即可通过控制氨化退火工艺的温度与时间进而
控制该相变进程。
37.实施例2:
38.一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
39.(1)将3g三氧化二铕粉末、3.75g五氧化二钽粉末和5.45g尿素加入到50ml无水乙醇中,并球磨240min,得到混合浆料;
40.(2)将步骤(1)球磨后所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
41.(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到euta(o,n)3氧氮化物纳米粉;
42.(4)将步骤(3)所得的euta(o,n)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以20℃/min的升温速率升温至1000℃,保温时间为6h,经检测,得到的氧氮化物为eutao
1.75
n
1.25

43.实施例3:
44.一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
45.(1)将3g三氧化二铕粉末、3.75g五氧化二钽粉末和5.45g尿素加入到50ml无水乙醇中,并球磨240min,得到混合浆料;
46.(2)将步骤(1)球磨后所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
47.(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到euta(o,n)3氧氮化物纳米粉;
48.(4)将步骤(3)所得的euta(o,n)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以30℃/min的升温速率升温至1200℃,保温时间为15h,经检测,得到的氧氮化物为eutao
2.04
n
0.96

49.以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文章

  • 日榜
  • 周榜
  • 月榜