一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种生物质衍生电磁功能材料及其制备方法与流程

2022-11-09 22:39:31 来源:中国专利 TAG:


1.本发明涉及一种生物质衍生电磁功能材料及其制备方法,与电磁能量转化领域密切相关。


背景技术:

2.随着信息化时代的高速发展,各类电子器件应用广泛,带来的电磁污染问题日益严重。复杂的电磁辐射环境不仅会干扰电子设备的正常运行,也会对人体健康带来危害,亟需开发具有重量轻、频段宽、吸收强和厚度薄的特点高效电磁波吸收材料。
3.根据电磁波转化机理,吸波材料一般分为磁损耗型和介电损耗型。传统磁损耗吸波材料包括铁氧体和磁性金属粉末,尽管其吸波能力较强,但具有密度大、频段窄、环境适应性差等缺点。介电损耗吸波材料包括导电聚合物、硫化物、氧化物和碳化物等,虽然具有质轻、导电性好和化学性能稳定等优势,但阻抗失配等因素仍限制其应用。为了同时兼具磁电损耗,大量研究将磁性材料与介电材料复合,利用磁损耗与电损耗的协同作用来改善阻抗匹配并增强对电磁波的衰减能力。专利201910644641.3发明了一种纳米feco颗粒/mxene核壳结构复合吸波材料,mxene具有片层状微观结构,可使feco包覆在其表面,形成介电-磁性两相异质结的微观核壳结构,平衡了复合材料的复介电频谱和复磁导率频谱间的差异,利于实现阻抗匹配。专利zl202010337987.1发明了一种纳米nife2o4/磷掺杂石墨烯复合吸波材料,磷掺杂能引入更多的载流子,有利于增强复合材料的电损耗能力,导电性能优异的磷掺杂石墨烯和磁性能优异的纳米nife2o4形成良好的阻抗匹配性能,在协同作用下增强了复合材料的吸波性能。但尽管磁电复合吸波材料可以较好的结合两方面优势从而获得优异的吸波性能,上述主流吸波材料在制备过程中使用了多种化学原料,成本较高;复合材料的制备工艺复杂且吸波性能与磁电两相比例及结合程度相关,需要对生长参数进行精确调控。开发性能优异、制备简便且成本低廉的电磁波吸收材料仍具挑战。
4.本发明优选可再生的废弃生物质材料,利用简单易行的方法制备电磁波吸收材料。所选生物质材料具有较为复杂的组成成分以及丰富的官能团结构,能在相应衍生电磁功能材料中形成大量界面和偶极子,增强包括界面极化和偶极子极化在内的介电损耗。。因此,利用生物质废弃物制备吸波材料不仅可以实现资源的再利用,还可以为开发高效环保的吸波材料提供有效方案。


技术实现要素:

5.本发明将丰富易得的生物质材料优选了树木落叶、藻类、芦苇、咖啡渣和中药渣五类具有复杂组分与较多官能团结构的生物质材料,通过形成界面极化与偶极子极化,有效增强材料的介电损耗,并经过清洗、活化、干燥和退火步骤,得到具有优异电磁波吸收性能的衍生功能材料。
6.本发明公开了一种生物质衍生电磁功能材料,所述电磁功能材料由生物质经清洗、活化、干燥、退火步骤制成。
7.优选地,所述生物质为树木落叶、藻类、芦苇、咖啡渣、中药渣中的一种或多种。
8.本发明还公开了上述生物质衍生电磁功能材料的制备方法,所述的制备方法由优选的生物质材料实行活化退火可得;具体步骤为:
9.(1)清洗:用去离子水和无水乙醇对生物质原料进行清洗;
10.(2)活化:将清洗后的生物质原料置于ph为10.0-14.0的碱性溶液中,在20~100℃下水浴活化0.5~15小时。
11.(3)干燥:将活化后的产物用去离子水洗涤3~5次后,在20~100℃下真空干燥0.5~48小时。
12.(4)退火:将干燥后所得产物在还原性或惰性气体氛围中退火处理,退火温度为300~900℃,保温0.5~10小时后冷却得到产物。
13.作为本发明的优选方案,所述的碱性溶液为naoh溶液、koh溶液、na2co3溶液或氨水中的一种。
14.作为本发明的优选方案,所述还原性或惰性氛围的气体为纯度99%以上的氮气、氩气、氩氢混合气(氢气体积比《10%)中的一种。
15.本发明选取的生物质材料,自身组分复杂且保留了较多的官能团结构,可以有效引起极化损耗,增强对微波的吸收能力,此外原材料还具有丰富易得,经济环保的独特优势。本发明使用的制备工艺,相较于磁电复合损耗吸波材料来说,制备工艺更加简单,可以作为一种低廉高效的方法广泛应用。
具体实施例
16.下面通过具体实施例,对本发明做进一步的说明。通过自身所具有的较多成分组成及丰富官能团结构,有效增加材料的极化损耗过程,显著提高材料的电磁波吸收能力。
17.实施例1:利用无患子叶制备衍生碳材料进行电磁波吸收
18.(1)称取无患子叶材料5.5g,用去离子水和无水乙醇对生物质原料进行清洗。
19.(2)将清洗后的生物质原料置于ph=12.7的naoh溶液中在80℃下水浴活化2小时。
20.(3)将活化后的产物用去离子水洗涤3次后,在70℃下真空干燥12小时。
21.(4)将干燥后所得产物在99.99%纯度的氩气氛围中进行退火处理,退火温度为700℃,保温2小时后冷却得到产物。
22.(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0023][0024]
实施例2:利用小球藻制备衍生碳材料进行电磁波吸收
[0025]
(1)称取小球藻材料10.8g,用去离子水和无水乙醇对生物质原料进行清洗。
[0026]
(2)将清洗后的生物质原料置于ph=13.7的koh溶液中在100℃下水浴活化6小时。
[0027]
(3)将活化后的产物用去离子水洗涤5次后,在50℃下真空干燥24小时。
[0028]
(4)将干燥后所得产物在99.5%纯度的氮气氛围中进行退火处理,退火温度为800℃,保温0.5小时后冷却得到产物。
[0029]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0030][0031]
实施例3:利用芦苇制备衍生碳材料进行电磁波吸收
[0032]
(1)称取芦苇材料22.4g,用去离子水和无水乙醇对生物质原料进行清洗。
[0033]
(2)将清洗后的生物质原料置于ph=10.0的na2co3溶液中在50℃下水浴活化12小时。
[0034]
(3)将活化后的产物用去离子水洗涤3次后,在20℃下真空干燥48小时。
[0035]
(4)将干燥后所得产物在99.99%纯度的氮气氛围中进行退火处理,退火温度为900℃,保温1小时后冷却得到产物。
[0036]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0037][0038]
实施例4:利用咖啡渣制备衍生碳材料进行电磁波吸收
[0039]
(1)称取咖啡渣材料15.6g,用去离子水和无水乙醇对生物质原料进行清洗。
[0040]
(2)将清洗后的生物质原料置于ph=10.7的氨水溶液中在80℃下水浴活化0.5小时。
[0041]
(3)将活化后的产物用去离子水洗涤4次后,在30℃下真空干燥6小时。
[0042]
(4)将干燥后所得产物在氢气比例为3.5%的氩氢混合气氛围中进行退火处理,退火温度为300℃,保温10小时后冷却得到产物。
[0043]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0044][0045]
实施例5:利用中药渣制备衍生碳材料进行电磁波吸收
[0046]
(1)称取中药渣31.2g,用去离子水和无水乙醇对生物质原料进行清洗。
[0047]
(2)将清洗后的生物质原料置于ph=14.0的naoh溶液中在50℃下水浴活化15小时。
[0048]
(3)将活化后的产物用去离子水洗涤5次后,在100℃下真空干燥1小时。
[0049]
(4)将干燥后所得产物在氢气体积比为10%的氩氢混合气氛围中进行退火处理,退火温度为500℃,保温8小时后冷却得到产物。
[0050]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0051][0052][0053]
实施例6:利用中药渣与咖啡渣制备衍生碳材料进行电磁波吸收
[0054]
(1)称取中药渣与咖啡渣材料各3.5g,用去离子水和无水乙醇对生物质原料进行清洗。
[0055]
(2)将清洗后的生物质原料置于ph=11.3的氨水溶液中在20℃下水浴活化4小时。
[0056]
(3)将活化后的产物用去离子水洗涤3次后,在60℃下真空干燥18小时。
[0057]
(4)将干燥后所得产物在氢气比例为12.0%的氩氢混合气氛围中进行退火处理,退火温度为300℃,保温10小时后冷却得到产物。
[0058]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0059]
[0060]
实施例7:利用枫叶、矽藻与芦苇制备衍生碳材料进行电磁波吸收
[0061]
(1)称取枫叶、矽藻与芦苇材料各6.5g,用去离子水和无水乙醇对生物质原料进行清洗。
[0062]
(2)将清洗后的生物质原料置于ph=12.5的koh溶液中在40℃下水浴活化10小时。
[0063]
(3)将活化后的产物用去离子水洗涤4次后,在100℃下真空干燥0.5小时。
[0064]
(4)将干燥后所得产物在氢气比例为15.0%的氩氢混合气氛围中进行退火处理,退火温度为500℃,保温3小时后冷却得到产物。
[0065]
(5)将样品粉末与石蜡混合,压成小环后,放入矢量网络分析仪(vna)中测量其介电常数,并通过公式计算材料的反射损耗,以及对应厚度下rl《10db时的有效带宽(eab)。数据如下:
[0066]
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献