一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种低氧超高纯砷棒成型装置的制作方法

2022-11-09 22:14:47 来源:中国专利 TAG:


1.本发明涉及砷棒成型领域,特别是涉及一种低氧超高纯砷棒成型装置。


背景技术:

2.超高纯砷是指杂质总量《1ppm的金属砷,广泛分布于自然界的非金属元素,接触空气表面逐渐氧化变成黑色。高纯砷可以用于制备gaas,ina等
ⅲ‑
v族化合物半导体材料及硅、锗单晶掺杂剂,还可用于制备as2se3(红外线透射玻璃、激光印刷机等)、as2s3(红外线透射玻璃)等。其最主要的功能是用来合成砷化镓,高纯砷的需求量基本上是由砷化镓的市场来决定的。现在砷化镓被广泛用于制作二极管、红外线发射管、激光器以及太阳能电池等,其还正在微电子领域、光电子、军事工业、宇航工业、计算机等尖端科技领域发挥着越来越大的作用。
3.目前,超高纯砷主要用于化合物半导体,所采用超高纯砷的形状为不规则碎块状,在加工的过程中难免会引入其他杂质或者氧含量偏高,但随着半导体材料技术的快速发展需求,特别是分子束外延技术的发展,下游行业对超高纯砷的形状及氧含量有了更高的要求。
4.常规的砷棒成型方式一般是采用直接浇铸的方法或者是机械加工。但砷的性质特殊,它的熔点是814℃,但是加热到615℃即开始升华为气态砷,也就是说固态高纯砷加热后在615℃开始升华为砷蒸汽,在加热到814℃时再液化变为高纯液态,针对于砷的特殊性质,采用直接浇铸的方法无法实现。同时高纯砷较脆,很难用机械加工的方式加工成所需的形状,且加工时高纯砷要接触到其他金属或者物质,容易导致对高纯砷造成污染。
5.所以,需要研究超高纯砷棒的成型装置,满足半导体材料行业发展的需求。而当前可查寻的资料中暂无低氧致密超高纯砷棒的成型的相关设备。因此,该高纯砷棒的成型设备研制,可以满足半导体行业分子束外延技术发展的要求。


技术实现要素:

6.为解决上述技术问题,本发明提供了一种低氧超高纯砷棒成型装置,可有效的辅助降低成型的砷棒的氧含量,还可有效的辅助提高成型的砷棒的致密度且使砷棒表面光滑平整;满足相应行业对超高纯砷棒的要求。
7.本发明解决其技术问题所采用的技术方案是:一种低氧超高纯砷棒成型装置,包括支架、安装在支架上的砷棒成型炉胆;所述砷棒成型炉胆包括炉体,炉体的内部形成炉腔;所述炉腔内安装有成型模具固定座,成型模具固定座上设置有安装槽,用于安装砷棒成型模具;所述炉体的外侧还设置有气体管路组件,气体管路组件与炉腔连通,用于对炉腔中的气体进行控制;所述支架还安装有平转机构,平转机构与砷棒成型炉胆联接,用于驱动砷棒成型炉胆平转;所述支架还安装有加热机构,加热机构与砷棒成型炉胆配合,用于对砷棒成型炉胆加热。
8.进一步的,所述气体管路组件包括与炉腔连通的气体管路汇流排;所述气体路汇
流排连接有抽真空管路、惰性气体加压管路、尾气排放管路;所述抽真空管路上设置有真空控制阀,所述惰性气体加压管路上设置有加压控制阀门;所述尾气排放管路上设置有排放阀门。
9.进一步的,所述成型装置还包括控制模块;所述真空控制阀、加压控制阀门、排放阀门为可响应于控制模块的控制命令而开关动作的阀门;所述炉体还设置有用于监测炉腔压力的压力传感器;所述控制模块被配置为:响应于抽真空指令,控制真空控制阀打开;响应于平转指令,控制平转机构启动;响应于加压指令,控制真空控制阀关闭,并控制加压控制阀门打开,接收压力传感器监测的炉腔压力数据,在压力值到达第一设定值时,控制加压控制阀门关闭;响应于出炉指令,控制排放阀门打开。
10.进一步的,所述气体管路组件还包括安全保护管路,所述安全保护管路上还设置有安全阀;所述安全阀为可响应于控制模块的控制命令而开关动作的阀门;所述控制模块还被配置为:接收压力传感器监测的炉腔压力数据,在压力值到达第二设定值时,控制安全阀打开。
11.进一步的,所述炉体顶部开口,并在开口处安装有炉盖;炉盖与炉体通过连接件连接;炉盖与炉体之间还设置有密封件;所述炉体的侧壁在靠近顶部开口的区域还设置有冷却机构。
12.进一步的,所述加热机构包括加热部,加热部内形成上下开口的加热通道;所述加热通道与砷棒成型炉胆配合,用于对砷棒成型炉胆加热。
13.进一步的,所述加热机构还包括安装于加热部的温度传感器,温度传感器的工作端靠近加热通道;所述控制模块还被配置为:接收温度传感器监测的温度数据,按照设定的温度参数控制加热部加热。
14.进一步的,所述成型装置还包括安装于支架的升降机构;所述加热机构与升降机构的升降移动端固定。
15.进一步的,所述升降机构包括安装于支架的丝杆组件、用于驱动丝杆的升降驱动元件、与丝杆螺母固定的安装架,该安装架作为升降机构的升降移动端与加热机构固定。
16.进一步的,所述成型模具固定座包括固定座体;所述固定座体的顶侧开有多个孔,孔用于作为安装槽,放置砷棒成型模具。
17.本发明的优点:本发明的一种低氧超高纯砷棒成型装置,在气体管路组件对炉腔气体进行控制时,通过平转提高对砷的脱氧效果,有效降低成型的超高纯砷棒的氧含量,并且还可通过平转去除物料液体内部的气泡,提高成型的超高纯砷棒的致密度,并使超高纯砷棒表面光滑平整;满足相应行业对超高纯砷棒的要求。
附图说明
18.图1为本实施例的一种低氧超高纯砷棒成型装置的示意图;
19.图2为本实施例的一种低氧超高纯砷棒成型装置的砷棒成型炉胆的示意图;
20.图3为本实施例的一种低氧超高纯砷棒成型装置的成型模具固定座的示意图;
21.图4为本实施例的一种低氧超高纯砷棒成型装置的成型模具固定座的顶面示意图;
22.其中,1-支架,2-加热机构,3-砷棒成型炉胆,4-平转机构,5-升降机构,11-支撑立
架,12-支撑底座,13-支撑顶架,21-加热部,22-加热通道,23-温度传感器,31-炉体,32-炉盖,33-炉腔,34-冷却机构,35-气体管路组件,36-成型模具固定座,37-连接件,351-气体管路汇流排,352-抽真空管路,353-惰性气体加压管路,354-尾气排放管路,355-安全保护管路,356-真空控制阀,357-加压控制阀门,358-排放阀门,359-安全阀,361-固定座体,362-孔,51-丝杆组件,52-升降驱动元件,53-安装架。
具体实施方式
23.为了加深对本发明的理解,下面将结合附图和实施例对本发明做进一步详细描述,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
24.实施例
25.请参照图1至图4所示,本实施例提供了一种低氧超高纯砷棒成型装置,包括支架1、安装在支架1上的砷棒成型炉胆3;所述砷棒成型炉胆3包括炉体31,炉体31的内部形成炉腔33;所述炉腔33内安装有成型模具固定座36,成型模具固定座36上设置有安装槽,用于安装砷棒成型模具;所述炉体31的外侧还设置有气体管路组件35,气体管路组件35与炉腔连通,用于对炉腔33中的气体进行控制;所述支架1还安装有平转机构4,平转机构4与砷棒成型炉胆3联接,用于驱动砷棒成型炉胆3平转;所述支架1还安装有加热机构2,加热机构2与砷棒成型炉胆3配合,用于对砷棒成型炉胆3加热。其中,气体管路组件35的气体控制方式包括但不限于:抽真空、充入惰性气体、排气等;平转机构为砷棒成型炉胆3提供平转功能,还可在气体管路组件对炉腔气体进行控制时,通过平转提高对砷的脱氧效果,有效降低成型的超高纯砷棒的氧含量,并且还可通过平转去除物料液体内部的气泡,提高成型的超高纯砷棒的致密度,并使超高纯砷棒表面光滑平整。
26.再参照图1所示,所述支架1包括支撑立架11、位于支撑立架11底侧的支撑底座12、位于支撑立架11顶侧的支撑顶架13;所述支撑顶架13用于安装3;支撑立架11的顶侧还安装有所述平转机构4,平转机构4的输出端与砷棒成型炉砷棒成型炉胆3传动连接。
27.再参照图2所示,所述气体管路组件35包括与炉腔33连通的气体管路汇流排351;所述气体路汇流排连接有抽真空管路352、惰性气体加压管路353、尾气排放管路354;所述抽真空管路352上设置有真空控制阀356,所述惰性气体加压管路353上设置有加压控制阀门357;所述尾气排放管路354上设置有排放阀门358。
28.本实施例的一种低氧超高纯砷棒成型装置中,所述成型装置还包括控制模块;所述真空控制阀356、加压控制阀门357、排放阀门358为可响应于控制模块的控制命令而开关动作的阀门;所述炉体31还设置有用于监测炉腔压力的压力传感器;所述控制模块被配置为:响应于抽真空指令,控制真空控制阀356打开;响应于平转指令,控制平转机构启动;响应于加压指令,控制真空控制阀356关闭,并控制加压控制阀门357打开,接收压力传感器监测的炉腔压力数据,在压力值到达第一设定值时,控制加压控制阀门357关闭;响应于出炉指令,控制排放阀门358打开。本实施例中,抽真空管路352用于连接抽真空系统(真空泵),惰性气体加压管路353用于连接高压高纯惰性气源,尾气排放管路354用于连接尾气淋洗系统;在控制模块的控制下:真空控制阀356在抽真空时打开、在加压时关闭;加压控制阀门357在加压时打开,向炉腔充入高纯惰性气体,加压控制阀门357与压力传感器形成联锁控制,对充入炉腔的气体压力进行调节,直至达到所需压力(第一设定值);排放阀门358在成
型过程中保持关闭状态,只有在准备出炉时打开,对炉腔进行泄压,排出的气体通过尾气淋洗系统进行处理。
29.再参照图2所示,所述气体管路组件35还包括安全保护管路355,所述安全保护管路355上还设置有安全阀359;所述安全阀359为可响应于控制模块的控制命令而开关动作的阀门;所述控制模块还被配置为:接收压力传感器监测的炉腔压力数据,在压力值到达第二设定值时,控制安全阀359打开。本实施例中,安全保护管路355的出口端可接在尾气排放管路354的出口端;在控制模块的控制下,安全阀359与压力传感器形成联锁控制;在炉腔内的压力过高时(第二设定值),安全阀359打开,对炉腔进行泄压,排出的气体通过尾气淋洗系统进行处理。
30.再参照图2所示,所述炉体31顶部开口,并在开口处安装有炉盖32;炉盖32与炉体31通过连接件37连接;炉盖32与炉体31之间还设置有密封件;所述炉体31的侧壁在靠近顶部开口的区域还设置有冷却机构34。其中,连接件37可为螺栓,螺栓均匀的分布炉体与炉盖结合区域的四周,本实施中具体采用了八个螺栓沿圆周均布,冷却机构34可为循环冷却水夹套,用于降低炉体31靠近端的温度,一方面可保护密封件不被高温影响而降低密封效果,另一方面也可起到降低砷蒸汽的作用。
31.再参照图1所示,所述加热机构2包括加热部21,加热部21内形成上下开口的加热通道22;所述加热通道22与砷棒成型炉胆3配合,用于对砷棒成型炉胆3加热。其中,加热部21可以采用电阻加热炉。
32.再参照图1所示,所述加热机构2还包括安装于加热部21的温度传感器23,温度传感器23的工作端靠近加热通道22;所述控制模块还被配置为:接收温度传感器23监测的温度数据,按照设定的温度参数控制加热部21加热。其中,温度传感器可以采用控温热电偶,通过控温热电偶的实时反馈,加热装置进行精准控温。
33.再参照图1所示,所述成型装置还包括安装于支架1的升降机构5;所述加热机构2与升降机构5的升降移动端固定。其中,升降机构5的驱动使加热机构2可以上下移动,加热机构2中上下开口的加热通道的设计,使得加热机构在成型砷棒的凝固成型时,可采用向上移动的方式,使得砷棒成型模具可从下至上逐渐降温,这样的降温成型方式,可使砷物料从底部先冷却凝固,顶面最后凝固,定向凝固成型可保证成型砷棒的致密性,而本实施例中,通过加热通道相对于砷棒成型模具向上移动的方式,还可保证砷棒凝固后,顶部平整,无缩孔。
34.再参照图1所示,所述升降机构5包括安装于支架1的丝杆组件、用于驱动丝杆的升降驱动元件(伺服电机)、与丝杆螺母固定的安装架53,该安装架53作为升降机构5的升降移动端与加热机构2固定。
35.再参照图3和图4所示,成型模具固定座36包括固定座体361;所述固定座体361的顶侧开有多个孔362,孔用于作为安装槽,放置砷棒成型模具;本实施例中,孔362为5个,呈十字分布。
36.使用例一
37.本使用例采用实施例的一种低氧超高纯砷棒成型装置,通过以下步骤进行种超高纯砷棒的制备:
38.s1、选用φ35
×
300mm的高纯石英材质的石英管五根(作为砷棒成型模具),在王水
里浸泡24h后,用高纯水冲洗干净,烘干,备用;
39.s2、在高纯氩气保护下的手套箱内称量纯度为99.999995%的砷445g,称量好的料放入步骤s1准备的砷棒成型模具中;
40.s3、把装料后的砷棒成型模具插入成型模具固定座上的孔内,固定好,盖上炉盖,紧固好螺栓,使炉盖与炉体牢牢固定;
41.s4、启动升降机构,带动加热机构向上移动,使炉体的装有砷棒成型模具的对应区域位于加热通道内;
42.s5、关闭的惰性气体加压管路的加压控制阀门、关闭尾气排放管路的排放阀门,打开抽真空管路的真空控制阀,开始抽真空,压力传感器反馈炉腔内实时压力,当炉腔内的真空度抽至10-4
pa时,启动加热机构,按照设定的升温程序进行升温,同时,启动平转机构,按照设定的平转运行程序驱动砷棒成型炉胆平转;其中,升温至530℃-580℃后,恒温1h,进行高温高真空下的高纯砷脱氧处理;
43.s6、脱氧处理结束后,关闭平转机构,砷棒成型炉胆停止平转,加热机构按照设定的升温程序继续进行升温,该升温过程中,关闭抽真空管路的真空控制阀,打开惰性气体加压管路的加压控制阀门,向炉腔内充入高纯氩气压力恒定为3.8-4.2mpa;升温过程为:按照升温速率1℃/min,升温至815℃-850℃后恒温,恒温时压力保持恒定;
44.s7、恒温结束后,再次启动平转机构,砷棒成型炉胆平转,按照设定的定向凝固程序,启动升降机构,带动加热机构上升,移动速度为10-50mm/h,加热通道向上移动直至脱离炉体装有砷棒成型模具的对应区域;关闭加热机构、平转机构、升降机构,自然降温至室温;
45.s8、打开尾气排放管路的排放阀门对炉腔进行泄压,泄压完成后,拧下螺栓,打开炉盖,取出成型模具固定座内的砷棒成型模具,在高纯氩气保护下的手套箱内对石英模具进行脱模取出砷棒。
46.对使用例一成型的砷棒进行测试:
47.1、分别称量5根砷棒的重量,每根的重量在435-443g范围内,且每根超高纯砷棒的表面光滑、致密无气孔;
48.2、随机选取一根高纯砷棒送样检测,砷棒的纯度达到99.999995%,砷棒中的氧含量<1ppm。
49.使用例二
50.本使用例与使用例一的不同点在于:步骤s1中,选用φ115
×
300mm的高纯石英材质的平底石英管一根(作为砷棒成型模具);步骤s2中,称量纯度为99.999995%的砷7072g放入步骤s1准备的砷棒成型模具中。其它与使用例一相同。
51.对使用例二成型的砷棒进行测试:
52.1、称量砷棒的重量:7064g,砷棒的表面光滑、致密无气孔;
53.2、砷棒送样检测,砷棒的纯度达到99.999995%,砷棒中的氧含量<1ppm。
54.本发明的一种低氧超高纯砷棒成型装置,通过在成型模具中根据不同的尺寸要求称量好物料放入成型腔体内,再密封好成型腔体后开始抽真空,再通过的高温高真空下脱氧、程序控制加压、程序升温化料、恒温、平转除气泡、定向凝固、降温出炉脱模等一系列的操作,可以制备超高纯砷棒。本装置避免了常规铸锭成型中存在的料锭表面不光滑有缩孔,氧含量偏高等问题,且成型形式灵活可变,可以根据所需成型的尺寸进行模具更换,成型过
程中物料只接触高纯石英,不会影响高纯砷棒的纯度;该装置自动化程度高,安全性好,可进行自动化控制,按照设置好的程序实现一键启动运行,所制备的高纯砷棒致密、光滑、无缩孔,氧含量小于1ppm;满足相应行业对超高纯砷棒的要求。
55.上述实施例不应以任何方式限制本发明,凡采用等同替换或等效转换的方式获得的技术方案均落在本发明的保护范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献