一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种磁响应纳米棒状脱硫吸附剂、制备方法及其应用

2022-07-10 05:19:43 来源:中国专利 TAG:


1.本发明涉及一种吸附剂、制备方法及其应用,更具体地说涉及一种磁响应纳米棒状脱硫吸附剂、制备方法及其应用。


背景技术:

2.传质速率对吸附和催化过程而言极其重要,因而良好的吸附速率是保证吸附分离效率和非均相催化反应效果的前提。在传统的吸附过程中,机械搅拌或磁力搅拌是提高传质速率最常见的手段,因此在液相吸附分离过程中需要使用搅拌桨或搅拌子,而吸附剂自身并不具备可操控的能力去提升传质。此外,在微通道等容器中,搅拌子尺寸的限制导致机械搅拌或磁力搅拌无法应用,只能依赖于吸附质缓慢的自扩散。
3.近年来,一些研究者通过精心设计吸附剂的纳米结构来避免吸附质的长程迁移,这类特殊结构的纳米吸附剂在吸附领域取得了一定的成效。然而其效果距离搅拌带来的传质提升还存在一定差距。从经济性和普遍适用性的角度考虑,亟待开发具有可操控性质的吸附剂以实现传质速率的提高。


技术实现要素:

4.本发明的目的在于提供一种磁响应纳米棒状脱硫吸附剂,该吸附剂在磁场的作用下具有搅拌功能,可以提升宏观和微观的固液/液液/气液体系中的传质速率。
5.本发明的另一个目的在于提供上述磁响应纳米棒状脱硫吸附剂的制备方法;同时本发明还提供该磁响应纳米棒状脱硫吸附剂在脱除的含硫化合物为燃油中芳香类硫化物中的应用。
6.本发明的目的通过如下技术方案实现:
7.本发明的磁响应纳米棒状脱硫吸附剂,由磁性纳米棒及包覆的多孔性外壳层组成,所述的磁性纳米棒的长度范围为1-30μm,磁性饱和磁化率为1000-15000oe,包覆的多孔性外壳层厚度范围为50-300nm。
8.本发明上述的磁响应纳米棒状脱硫吸附剂的制备方法,包括以下步骤:先通过水热合成的方法制备磁性纳米载体,再在表面包覆的过程中通过磁场诱导将磁性纳米载体制备成棒状形貌,接着再通过多孔性壳层的包覆来构筑脱硫吸附剂。
9.本发明上述的磁响应纳米棒状脱硫吸附剂的制备方法,其进一步的技术方案是所述的磁性纳米棒中的磁性组分为四氧化三铁、三氧化二铁、单质铁或四氧化三钴,磁性纳米棒中的非磁性组分为二氧化硅、金属氧化物或聚合物;所述的多孔性的外壳层为多孔碳、分子筛、金属有机骨架、多孔聚合物、多孔金属氧化物或多孔二氧化硅中的一种或其组合。
10.本发明上述的磁响应纳米棒状脱硫吸附剂在液态燃油脱硫中吸附及磁响应搅拌功能实现吸附速率提高中的应用。
11.本发明上述的应用,其进一步的技术方案是所述的吸附剂在脱除的含硫化合物为燃油中芳香类硫化物中的应用。再进一步的技术方案是所述的芳香类硫化物为噻吩、苯并
噻吩、二苯并噻吩或4,6-二甲基二苯并噻吩。再进一步的技术方案还可以是所述的吸附剂的使用在温度为20~50℃、压力为0.1~0.5mpa。
12.本发明与现有技术相比,具有以下有益效果:
13.本发明的吸附剂的多孔壳层种类可变、厚度可调,在外界磁场作用下的搅拌功能实现了各类催化反应的增强传质效果,吸附剂性能能够实现完全再生。该吸附剂相比于传统的多孔吸附剂,具备在磁场作用下实现搅拌、磁回收的功能,可以解决微观吸附应用中的传质问题,同时在宏观的吸附应用过程中也有着较好的效果。在施加外界旋转磁场时,纳米棒状吸附剂可以跟随磁场旋转,实现溶液的搅拌,增强吸附质和吸附剂的快速接触及在吸附剂孔道中的快速传质,从而加快吸附过程,大大节约了时间成本。纳米棒状吸附剂的磁响应特性使该吸附剂在使用后可以便捷地从反应溶液中进行回收。本发明的吸附剂可用于宏观或微观尺寸的吸附过程,具体的吸附应用领域为液态燃油的深度脱硫。
具体实施方式
14.本发明用以下具体实施例子说明,但本发明并不限于下述实施例,在不脱离前后所述宗旨的范围内,变化实施都包含在本发明的技术范围内。
15.实施例1
16.称取1g的三氯化铁于250ml烧杯中,加入40ml乙二醇,室温下搅拌至fecl3完全溶解,得到橘黄色透明溶液;向上述溶液中加入0.5g的无水乙酸钠和6.0g的柠檬酸三钠固体粉末,继续搅拌30min,将上述溶液加入聚四氟乙烯反应釜中200℃下反应10小时,得到磁性四氧化三铁纳米颗粒。量取3ml的上述黑色溶液于烧杯中,乙醇洗涤并用强力磁铁磁性分离3次,随后加入40ml乙醇,6ml去离子水和2ml氨水,所得溶液用保鲜膜封好超声5min后加入250ml三口烧瓶中。逐步滴加120μl正硅酸四乙酯于上述溶液,30℃下机械搅拌12min;将反应后的溶液快速均匀滴加于事先准备好的比色皿中,将每个比色皿于特制的磁场装置(300gs)下诱导2.5秒,随后静置在远离磁场处3h,反应后的溶液汇聚于烧杯中,洗涤后60c干燥得到棕褐色固体粉末,即为磁性纳米棒。
17.制备包覆介孔二氧化硅的多孔吸附剂。将上述的磁性纳米棒加入20ml去离子水中,超声15min后依次加入30ml去离子水、30ml乙醇、0.15g十六烷基三甲基溴化铵、0.55ml氨水,该溶液机械搅拌30min后注入0.25ml的正硅酸四乙酯,继续搅拌6h后使用磁铁分离、洗涤、回收。将干燥后的样品在空气氛围下550c煅烧3h后收集封存。
18.实施例2
19.称取1g的三氯化铁于250ml烧杯中,加入40ml乙二醇,室温下搅拌至fecl3完全溶解,得到橘黄色透明溶液;向上述溶液中加入0.5g的无水乙酸钠和6.0g的柠檬酸三钠固体粉末,继续搅拌30min,将上述溶液加入聚四氟乙烯反应釜中200c下反应10小时,得到磁性四氧化三铁纳米颗粒。量取3ml的上述黑色溶液于烧杯中,乙醇洗涤并用强力磁铁磁性分离3次,随后加入40ml乙醇,6ml去离子水和2ml氨水,所得溶液用保鲜膜封好超声5min后加入250ml三口烧瓶中。逐步滴加120μl正硅酸四乙酯于上述溶液,30c下机械搅拌12min;将反应后的溶液快速均匀滴加于事先准备好的比色皿中,将每个比色皿于特制的磁场装置(300gs)下诱导2.5秒,随后静置在远离磁场处3h,反应后的溶液汇聚于烧杯中,洗涤后60c干燥得到棕褐色固体粉末,即为磁性纳米棒。
20.制备包覆多孔碳的多孔吸附剂。将上述的磁性纳米棒加入20ml乙醇和10ml去离子水中并超声分散,随后加入1ml氨水、0.04(0.08)g间苯二酚和56(112)μl甲醛,室温下反应24h后磁性分离、洗涤、回收、干燥。得到的粉末在氮气下600℃煅烧3h后收集封存。
21.实施例3
22.称取1g的三氯化铁于250ml烧杯中,加入40ml乙二醇,室温下搅拌至fecl3完全溶解,得到橘黄色透明溶液;向上述溶液中加入0.5g的无水乙酸钠和6.0g的柠檬酸三钠固体粉末,继续搅拌30min,将上述溶液加入聚四氟乙烯反应釜中200c下反应10小时,得到磁性四氧化三铁纳米颗粒。量取3ml的上述黑色溶液于烧杯中,乙醇洗涤并用强力磁铁磁性分离3次,随后加入40ml乙醇,6ml去离子水和2ml氨水,所得溶液用保鲜膜封好超声5min后加入250ml三口烧瓶中。逐步滴加120μl正硅酸四乙酯于上述溶液,30℃下机械搅拌12min;将反应后的溶液快速均匀滴加于事先准备好的比色皿中,将每个比色皿于特制的磁场装置(300gs)下诱导2.5秒,随后静置在远离磁场处3h,反应后的溶液汇聚于烧杯中,洗涤后60℃干燥得到棕褐色固体粉末,即为磁性纳米棒。
23.制备包覆金属有机骨架的多孔吸附剂。将上述的磁性纳米棒加入聚苯乙烯磺酸钠的水溶液中进行表面改性,随后加入0.17g硝酸铜和0.1g均苯三甲酸进行金属有机骨架的生长,该过程重复7次使表面包覆足够的金属有机骨架。之后磁性分离、洗涤、回收、干燥、封存。
24.实施例4
25.探究上述合成的磁响应纳米棒状脱硫吸附剂的宏观体系中的搅拌性能,将实例1~3中的多孔吸附剂分散在20ml的乙醇(或水、乙腈、甲醇、丙酮、甲苯、四氢呋喃、n,n-二甲基甲酰胺等溶剂)中,在磁场作用下实现了吸附剂的搅拌以及快速扩散于整个溶液。
26.实施例5
27.探究上述合成的磁响应纳米棒状脱硫吸附剂的微观体系中的搅拌性能,将实例1~3中的多孔吸附剂分散在液滴中(乙醇或水、乙腈、甲醇、丙酮、甲苯、四氢呋喃、n,n-二甲基甲酰胺等溶剂),在磁场作用下实现了吸附剂的搅拌以及快速扩散于整个溶液。
28.以上特例均为使本发明的上述目的、特征和优点能够更加明显易懂,本项发明包括但不局限于以上特例。将实施例4~5测量的数据如表1所示:
29.表1实施例1~3中功能集成纳米棒状催化剂的扩散与搅拌行为
[0030][0031]
根据实例1~3的结果可以得到,利用此方法制备的磁响应纳米棒状脱硫吸附剂在装有20ml的水溶液小瓶子中,当施加了外部旋转磁场后,可以在30s左右从底部扩散至整个溶液,并持续旋转搅拌溶液。当把溶液更换至小液滴时,搅拌行为仍可以进行,整个过程仅需10s,而这一溶液尺寸是正常的搅拌设施难以应用的。观测了吸附剂在光学显微镜下的搅拌行为,正是吸附剂随着磁场的运动进行搅拌转动。这一结果充分证明该吸附剂具有搅拌
的功能。
[0032]
实施例6
[0033]
对实施例1~3进行吸附性能测试,实验分为静态(未使用旋转磁场)和动态(使用旋转磁场)两类。实例1的吸附质为噻吩,检测手段为气相色谱;实例2的吸附质为苯并噻吩,检测手段为气相色谱;实例3的吸附质为二苯并噻吩,检测手段为气相色谱。以上吸附测试的动态和静态均控制在相同条件下,记录静态和动态的最接近饱和吸附量的时间。静态和动态的吸附效果列于下表:
[0034]
表2实施例1~3中功能集成纳米棒状吸附剂的静态和动态吸附效果
[0035][0036][0037]
根据表2中实施例1~3的比较可得,本发明可以实现在外加磁场下对吸附的加速作用,在吸附剂自身的搅拌特性下,不需要额外加入宏观转子就可以实现快速的吸附过程。这说明在外界磁场下,吸附剂的吸附速率快,吸附扩散阻力小,纳米棒状吸附剂的搅拌有利于吸附质的迁移。准一级动力学和准二级动力学方程被用于拟合吸附动力学曲线,拟合参数均在合理范围之内。
[0038]
实施例7
[0039]
对实施例1~3进行吸附后的吸附剂进行磁性分离回收,并对回收后的催化剂进行称重和催化重复性测试,测试结果如表3。
[0040]
表3实施例1~3中纳米棒状吸附剂的回收和吸附循环性能
[0041][0042]
根据表3中实施例1~3的比较可得,该发明中的吸附剂具有可以通过磁性分离简便的从溶液中分离回收出来,同时多次循环使用后的吸附量仍可以较好的保持。
[0043]
吸附剂的多孔壳层灵活多变,可以根据具体的吸附过程进行设计改变。在外界磁场下吸附剂自身的搅拌效果可以实现吸附质和吸附剂的快速接触以及在吸附剂孔道中的快速传质,从而加快吸附过程,大大节约了时间成本。同时,磁响应特性使该吸附剂在使用后可以便捷地从反应溶液中进行回收,多次磁分离回收后吸附效果仍能得到保持。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献