一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒的制备方法

2022-09-03 16:33:00 来源:中国专利 TAG:


1.本发明涉及一种小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒的制备方法,属于药物制剂技术领域。


背景技术:

2.槲皮素(3,3',4',5,7-五羟基黄酮,quercetin)是一种天然黄酮醇,它具有多种生物活性,除了能抗致癌、抗菌和抗病毒外,也是最有效的抗氧化剂之一。流行病学研究表明,经常食用富含槲皮素的食物可能降低心血管损害和癌症风险。然而,日常饮食不能提供足够量的槲皮素,因此需要制备增强槲皮素的食物或相关补品。但由于其有限的水溶性和低稳定性,限制了其在亲水性食品系统中的应用。
3.目前,提高槲皮素的溶解度和生物利用率的方法主要是通过制备纳米级运载体系,如纳米颗粒、微乳、微球、环糊精包合物等。然而在纳米级运载体系的制备过程中,采用有机试剂作为溶剂,可能会导致有机溶剂残留引发的安全的问题。而醇溶蛋白、多糖等作为生物大分子多来源于动植物,其可再生性强、与人体具有良好的亲和性且较少发生排异反应,同时人体内的酶体系可将生物大分子降解成小分子以降低对人体的毒害性。因此,其良好的生物相容性和无毒无害性使其广受研究学者的关注。与此同时,部分多糖富含可改性官能团等修饰作用位点使得其作为药物载体的应用前景更为广阔。因此醇溶蛋白和多糖可被用于制备纳米颗粒等以作为运载疏水性营养物质载体。
4.小麦作为目前中国产量很高的一种粮食,其浪费也非常严重。为了提高小麦在营养健康方面的应用,本发明人选择从小麦中提取小麦醇溶蛋白,这样既提高小麦的利用效率又能作为纳米颗粒运载体系的原料。小麦醇溶蛋白是一类两亲性的疏水蛋白,目前制备小麦醇溶蛋白纳米颗粒的方法多为反溶剂法,溶剂极性改变会引发由两亲性驱动的小麦醇溶蛋白分子自组装形成纳/微尺度的胶体颗粒,发明人研究组在前期研究中发现,虽然反溶剂法制备得到的小麦醇溶蛋白纳米颗粒能够负载一定量的疏水活性物质并达到一定的储藏稳定性,但制得的小麦醇溶蛋白纳米颗粒具有较弱的ph稳定性和不可控的储藏稳定性,在后期的应用中受到限制。


技术实现要素:

5.本发明的目的在于解决现有技术的不足,提供一种小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒的制备方法,该方法制备得到的纳米颗粒稳定性好,并且槲皮素的负载率高。
6.技术方案
7.一种小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒的制备方法,包括如下步骤:
8.(1)小麦醇溶蛋白的提取:
9.将谷朊粉加入到乙醇水溶液中,充分搅拌均匀后,离心收集上清液,旋转蒸发除去乙醇,然后冷冻干燥,得到小麦醇溶蛋白;
10.(2)纳米颗粒的制备
11.将小麦醇溶蛋白溶解于乙醇水溶液中,再加入槲皮素,搅拌均匀后,得到小麦醇溶蛋白-槲皮素储备液,将小麦醇溶蛋白-槲皮素储备液呈细流状加入到去离子水中,得小麦醇溶蛋白-槲皮素纳米颗粒;将阿拉伯胶溶于去离子水,得到阿拉伯胶水溶液,然后将阿拉伯胶水溶液加入到小麦醇溶蛋白-槲皮素纳米颗粒中,得到分散液,调分散液的ph值为4并搅拌均匀,离心后收集上清液,冷冻干燥,得到小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒。
12.步骤(2)中,所述小麦醇溶蛋白与槲皮素的质量比为(5-100):1,小麦醇溶蛋白与阿拉伯胶的质量比为1:2。
13.进一步,步骤(1)中,所述乙醇水溶液的体积浓度为60-80%。
14.进一步,步骤(1)中,所述离心的转速为4000-6000r/min,时间为8-12min。
15.进一步,步骤(1)中,所述旋蒸的温度为50-60℃。
16.进一步,步骤(2)中,所述乙醇水溶液的体积浓度为80%。
17.进一步,步骤(2)中,所述小麦醇溶蛋白与槲皮素的质量比为10:1。
18.本发明的有益效果:
19.1)本发明采用小麦醇溶蛋白及阿拉伯胶两种食源性生物大分子作为运载体系壁材,降低生产成本的同时,提高了药物缓释制剂的安全性,避免因使用有机化合物导致机体出现副作用的现象。
20.2)本发明通过复合阿拉伯胶,借助阿拉伯胶中的蛋白结构形成的空间位阻,可一定程度上保护小麦醇溶蛋白纳米颗粒在酸性条件及等电点环境下的分解,稳定复合纳米颗粒,提高了纳米颗粒中槲皮素的负载率和纳米颗粒的稳定性。
21.3)本发明制备所得到的纳米颗粒对槲皮素的负载率达到85.21%以上,可以将纳米颗粒复溶形成稳定的混悬液进行注射,混悬液在28天的储藏时间之内,体系稳定无浑浊。
附图说明
22.图1为实施例1-4和对比例1-2制得的纳米颗粒的粒径测试结果;
23.图2为实施例1制得的纳米颗粒中的槲皮素在模拟胃部消化液中的释放率测试结果;
24.图3为实施例1制得的纳米颗粒中的槲皮素在模拟肠道消化液中的释放率测试结果。
具体实施方式
25.下面结合附图和具体实施例对本发明作进一步说明。
26.实施例1
27.一种小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒的制备方法,包括如下步骤:
28.(1)小麦醇溶蛋白的提取:
29.将100谷朊粉加入到1l体积浓度为70%的乙醇水溶液中,并置于磁力搅拌器上,以1000r/min的转速持续搅拌3h后,以5000r/min的转速离心10min离心,收集上清液,55℃下旋转蒸发除去乙醇,然后于-40℃冷冻干燥72h,得到小麦醇溶蛋白;
30.(2)纳米颗粒的制备
31.以0.05:1的固液比将小麦醇溶蛋白溶解于体积浓度为80%的乙醇水溶液中,再加
入槲皮素,搅拌均匀后,得到小麦醇溶蛋白-槲皮素储备液,将小麦醇溶蛋白-槲皮素储备液呈细流状加入到去离子水中得小麦醇溶蛋白-槲皮素纳米颗粒;
32.将阿拉伯胶溶于去离子水,制备浓度为0.2g/ml的阿拉伯胶水溶液,将阿拉伯胶水溶液加入到小麦醇溶蛋白-槲皮素纳米颗粒中,得到分散液,用1mol/l hcl调分散液的ph值为4并搅拌均匀,以4000r/min的转速离心10min后收集上清液,冷冻干燥,得到小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒。
33.本实施例中,小麦醇溶蛋白与槲皮素的质量比为10:1,小麦醇溶蛋白与阿拉伯胶的质量比为1:2。
34.实施例2
35.步骤(2)中,小麦醇溶蛋白与槲皮素的质量比为5:1,其余与实施例1相同。
36.实施例3
37.步骤(2)中,小麦醇溶蛋白与槲皮素的质量比为50:1,其余与实施例1相同。
38.实施例4
39.步骤(2)中,小麦醇溶蛋白与槲皮素的质量比为100:1,其余与实施例1相同。
40.对比例1
41.步骤(2)中,小麦醇溶蛋白与槲皮素的质量比为2:1,其余与实施例1相同。
42.对比例2
43.步骤(2)中,小麦醇溶蛋白与槲皮素的质量比为1:1,其余与实施例1相同。
44.性能测试:
45.1.测试实施例1-4和对比例1-2制得的纳米颗粒中对槲皮素的包封率
46.移取10ml纳米颗粒溶液、10ml二甲基亚砜置于烧杯中,搅拌1h,萃取得游离的槲皮素,用0.22μm有机膜过滤,重复萃取3次,合并萃取液用二甲基亚砜稀释10倍,以二甲基亚砜作为空白对照,于槲皮素特征吸收峰λ=375nm处测定样品的吸光度,根据槲皮素的标准曲线线性回归方程:y=0.0065 0.009x,r=0.9995。计算游离槲皮素含量,得出槲皮素包封率。
47.槲皮素包封率=(加入槲皮素含量—游离槲皮素含量)/加入槲皮素含量
×
100%
48.测试结果见表1:
49.表1实施例1-4和对比例1-2制得的纳米颗粒对槲皮素的包封率
[0050][0051]
注:不同小写字母表示差异显著(p<0.05)。
[0052]
由表1可以看出,实施例1-4制得的纳米颗粒可以完全与槲皮素结合,从而表明复合纳米颗粒显著(p《0.05)提高了对槲皮素的负载能力,并达到85.21%以上。
[0053]
2.测试实施例1-4和对比例1-2制得的纳米颗粒的粒径,结果见图1。
[0054]
由图1可以看出,实施例1、实施例3和实施例4制得的纳米颗粒的粒径和pdi较为稳定,变化幅度较小,其中,实施例1制得的负载槲皮素的复合纳米颗粒粒径为220.26nm,pdi为0.27,体系较为稳定;对比例1和2制得的纳米颗粒的粒径增大至390.45nm,且pdi均大于0.30。
[0055]
3.模拟测试实施例1制得的纳米颗粒中槲皮素在胃肠道中的释放率
[0056]
将实施例1制得的纳米颗粒用蒸馏水复溶成浓度为1%的纳米颗粒溶液,取50ml纳米颗粒溶液,用1mol/lhcl溶液调节至ph为2.0,置于水浴摇床中在37℃条件下进行培养,接着,将胃蛋白酶(20ml,18mg/l)添加到纳米颗粒溶液中,进行胃部模拟消化,时间为120min,分别于10min、20min、30min、45min、60min、75min、90min、105min、120min的时间点取模拟胃部消化液待测;经过120min的胃部模拟消化后,使用1mol/lnaoh溶液将纳米颗粒溶液ph值调节至7.0,并加入胰蛋白酶(0.06g)于胃消化液中进行模拟肠道消化,时间为120min,分别于肠部模拟消化时间为10min、20min、30min、45min、60min、75min、90min、105min、120min时取模拟肠部消化液待测。最后,各移取2ml二甲基亚砜分别与待测模拟胃部消化液和模拟肠部消化液充分振荡涡旋2min以提取槲皮素。混合涡旋后取上清液在375nm处使用紫外分光光度计测定吸光度,带入标准曲线进行计算槲皮素浓度。根据公式计算体外胃部及肠道模拟消化中槲皮素的释放速率。
[0057]
释放速率=游离槲皮素释放量/总槲皮素含量
×
100%
[0058]
图2为实施例1制得的纳米颗粒中的槲皮素在模拟胃部消化液中的释放率测试结果,可以看出,在胃部消化阶段,30min内槲皮素从复合纳米颗粒中释放率显著增大(p《0.05),发生突释现象,纳米颗粒运载体系部分破裂,释放一定量槲皮素,30min时释放率升至40.56%;随着时间的推移,胃部模拟槲皮素的消化释放率逐渐趋于平缓,到120min时,小麦醇溶蛋白-阿拉伯胶-槲皮素中槲皮素释放率为48.62%。选用q%=a(1-e-kt)模型对其释放速率进行拟合分析可得,槲皮素的释放率总体呈现随时间的增大而减缓的趋势,符合一级动力学释放模型且r2为0.934。实验结果一方面表明小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒具备一定的胃蛋白酶消化抗性,ga的结合一定程度上阻止了小麦醇溶蛋白纳米颗粒在胃部的分解和消化,能够将槲皮素运输至结肠处,另一方面表明槲皮素的释放速率与途径与运载体系机械强度和致密程度有关。
[0059]
图3为实施例1制得的纳米颗粒中的槲皮素在模拟肠道消化液中的释放率测试结果,可以看出,在随后120min的肠道消化模拟阶段,槲皮素从复合纳米颗粒中呈现释放率随时间变化逐渐增大的趋势符合零级动力学,且r2为0.926。在胃肠道消化240min后,槲皮素的释放率达到97.32%,接近于完全释放。这可能是由于小麦醇溶蛋白-阿拉伯胶-槲皮素纳米颗粒在ph为7.0时消化性较好,易被胰蛋白酶消化并释放槲皮素。因此在胃肠道模拟消化中,复合纳米颗粒可实现槲皮素的缓释,对于槲皮素在人体结肠部位靶向释放的目的有良好保护作用。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献