一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜及半导体元件与流程

2022-07-30 15:22:36 来源:中国专利 TAG:


1.本公开涉及在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜及含铋氧化镓系半导体元件。


背景技术:

2.日本特开2020-117430公开了一种氧化镓的制造方法,该制造方法包括使用脉冲激光沉积(pulsed laser deposition)法在氧化镓基板上沉积掺杂了氮的氧化镓。另外,该文献公开了在制造时,使氧化镓基板的温度为500℃~900℃,并且使激光强度为0.5j/cm2。


技术实现要素:

3.需要如下氧化镓系半导体及其制造方法,该氧化镓系半导体具有作为纯氧化镓的最稳定结构的单斜晶系β-gallia结构,并且,带隙能量(band gap energy)比氧化镓的带隙能量小。这样的氧化镓系半导体被期待应用于面向中高耐压的功率半导体器件。
4.氧化铋具有比氧化镓小的带隙能量。因此,氧化镓与氧化铋的混晶被期待为带隙能量比氧化镓的带隙能量小。
5.于是,本公开的发明人为了使氧化镓系半导体膜的带隙能量降低,研究了使具有β-gallia结构的氧化镓系半导体膜含有铋。
6.关于这一点,作为含铋氧化镓系半导体膜的成膜方法,难以通过如日本特开2020-117430所公开那样的条件、即使氧化镓基板的温度为500℃~900℃、且使激光强度为0.5j/cm2的条件下的脉冲激光沉积法(pld),用铋充分地置换晶体中的镓位点(site)。
7.本公开的目的在于,提供一种在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜以及含有该半导体膜的含铋氧化镓系半导体元件。
8.本公开的发明人发现了能够通过以下技术方案解决上述技术问题:
9.《技术方案1》
10.一种方法,通过使用了含有氧化镓和氧化铋的靶的脉冲激光沉积法,在基材上形成含铋氧化镓系半导体膜,
11.使所述基材的温度为650℃~1000℃,并且,
12.使激光强度为1.0j/cm2~10.0j/cm2。
13.《技术方案2》
14.根据技术方案1所述的方法,
15.在将所述靶中的铋的原子数相对于铋与镓的原子数的合计的比例设为y at%、且将所述基材的温度设为t℃时,满足以下的式(1):
16.y≥1/(0.52-t/2500)
ꢀꢀꢀꢀ
(1)。
17.《技术方案3》
18.根据技术方案2所述的方法,
19.5.00≤y≤50.00。
20.《技术方案4》
21.根据技术方案1~3中任一项所述的方法,
22.所形成的所述含铋氧化镓系半导体膜的铋的原子数相对于铋与镓的原子数的合计的比例为0.50at%~10.00at%,并且,所述含铋氧化镓系半导体膜具有β-gallia结构。
23.《技术方案5》
24.根据技术方案1~4中任一项所述的方法,
25.所述基材为氧化铝基材或者氧化镓基材。
26.《技术方案6》
27.一种含铋氧化镓系半导体膜,铋的原子数相对于铋与镓的原子数的合计的比例为0.50at%~10.00at%,并且,所述含铋氧化镓系半导体膜具有β-gallia结构。
28.《技术方案7》
29.根据技术方案6所述的含铋氧化镓系半导体膜,
30.x射线衍射2θ-ω测定中的源于β-gallia结构的(-603)面的峰的半值宽度为0.40
°
~1.00
°

31.《技术方案8》
32.根据技术方案6或者7所述的含铋氧化镓系半导体膜,
33.带隙能量为3.8ev以下。
34.《技术方案9》
35.一种含铋氧化镓系半导体元件,具有基材和层叠在所述基材上的技术方案6~8中任一项所述的含铋氧化镓系半导体膜。
36.《技术方案10》
37.根据技术方案9所述的含铋氧化镓系半导体元件,
38.所述基材为氧化铝基材或者氧化镓基材。
39.根据本公开,能够提供一种在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜及含有该半导体膜的含铋氧化镓系半导体元件。
附图说明
40.下文将参照附图说明本发明示例性实施例的特征、优点以及技术和产业上的意义,其中,相同的标号表示相同的要素,并且,其中:
41.图1是表示用于实施根据本公开的第一实施方式的方法的脉冲激光沉积装置1的一个例子的示意图。
42.图2是对实施例1~5以及比较例1和2的试料中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)进行了比较的图。
43.图3是对实施例1~5以及比较例1和2的试料的带隙能量的、相对于不含有异种元素的氧化镓系半导体膜的带隙能量的缩小量进行了比较的图。
44.图4是对实施例1~5以及比较例1和2的试料的源于β-gallia结构的衍射峰的半值宽度进行了比较的图。
45.图5是表示实施例1的试料的x射线衍射2θ-ω测定结果的图。
46.图6是表示实施例2的试料的x射线衍射2θ-ω测定结果的图。
47.图7是关于实施例1和实施例4以及实施例6~8的试料,表示含铋氧化镓系半导体膜中的铋的含有量(at%)相对于靶中的铋的含有量(at%)之比与基材的温度(℃)之间的关系的图。
48.图8是关于实施例1~5以及比较例1和2的试料,汇总了成膜条件和结果的图。
具体实施方式
49.以下,对本公开的实施方式进行详细描述。此外,本公开并不限定于以下的实施方式,能够在公开的本意的范围内进行各种变形来加以实施。
50.《形成含铋氧化镓系半导体膜的方法》
51.本公开的方法是通过使用了含有氧化镓和氧化铋的靶的脉冲激光沉积法,在基材上形成含铋氧化镓系半导体膜的方法,是使基材的温度为650℃~1000℃、且使激光强度为1.0j/cm2~10.0j/cm2的方法。
52.并不是通过原理进行限定,但能够通过本公开的方法在基材上形成含铋氧化镓系半导体膜的原理为以下所述。
53.在脉冲激光沉积法等成膜方法中,为了形成具有高结晶性的薄膜,考虑将基板加热为高温。这是由于通过将基板加热为高温,能够一边使不稳定且容易脱离的非结晶部分脱离,一边仅留下稳定的结晶部分。
54.然而,通过高温条件下的脉冲激光沉积法,难以形成具有β-gallia结构的含铋氧化镓系半导体膜。对此,认为原因例如在于氧化铋的熔点(约800℃)低以及铋的离子半径大。
55.更具体而言,氧化铋的熔点(约800℃)大幅度低于氧化镓的熔点(约1800℃)。因此,在能够形成氧化镓系半导体膜的高温区域中,铋容易在成膜期间中脱离。即,在采用了高温条件下的脉冲激光沉积法的情况下,难以在所形成的氧化镓系半导体膜中残留铋。
56.另外,铋的离子半径远远大于镓的离子半径因此,一般而言,在采用了低温条件下的脉冲激光沉积法的情况下,在所形成的氧化镓系半导体膜中,难以在含有铋的同时保持β-gallia结构。
57.关于这一点,在本公开的方法中,在脉冲激光沉积法中,在将基板的温度保持为高温、更具体而言保持为650℃~1000℃的同时,使激光的强度为1.0j/cm2~10.0j/cm2。
58.在本公开的方法中,通过在将基板的温度维持为高温的同时也增大激光的强度,从而加快成膜速度。由此,在本公开的方法中,能够在抑制成膜期间中的铋的脱离的同时,形成维持了β-gallia结构的薄膜、即含铋氧化镓系半导体膜。
59.脉冲激光沉积法例如能够通过图1所示的脉冲激光沉积装置1来进行。而具体而言,本公开的方法通过从真空腔室10外部对设置在真空腔室10内的靶20照射烧蚀(ablation)激光30,能够从靶20剥下原子(分子),在与靶20相对向的基材40上形成含铋氧化镓系半导体膜50。
60.靶20设置在真空腔室10内的台上。考虑从靶20飞散的成膜活性种的分布,基材40设置在从靶20隔开了预定距离的位置。烧蚀激光30通过石英窗60而倾斜入射,以适当的强
度在靶20表面聚光。另外,基材40被通过基材加热机构70进行加热。
61.在通过图1所示的装置进行脉冲激光沉积法时,首先,在真空腔室10内配置靶20之后,通过真空排气机构80将真空腔室10内抽真空。然后,使得从气体导入机构90流通作为气氛气体的氧气,将真空腔室10内维持为所希望的压力。此外,作为气氛气体的氧促进形成在基材40上的含铋氧化镓系半导体膜50的氧化,由此,能够抑制铋的脱离。
62.此外,图1不是旨在限定本公开的方法。
63.〈基材〉
64.作为基材,能够采用能通过脉冲激光沉积法形成具有β-gallia结构的氧化镓系半导体膜的任意基材。
65.作为基材,例如可以举出氧化镓基材。更具体而言,作为基材,能够使用通过任意方法制作出的ga2o3单晶基板或者市售的ga2o3单晶基板。ga2o3单晶基板特别优选β-ga2o3单晶基板。另外,基材可以为氧化铝基材、即al2o3基材。
66.〈基材的温度〉
67.本公开的方法中的成膜温度、即进行脉冲激光沉积法时的基材的温度为650℃~1000℃。
68.当基材的温度小于650℃时,无法充分地得到所形成的含铋氧化镓系半导体膜的结晶性。另一方面,当基材的温度超过1000℃时,镓以及铋的脱离处于优势地位,无法在基材上充分地沉积含铋氧化镓系半导体膜。
69.进行脉冲激光沉积法时的基材的温度可以为650℃以上、750℃以上、850℃以上或者900℃以上,可以为1000℃以下、950℃以下、900℃以下或者850℃以下。
70.此外,从使结晶性以及含铋量提高的观点出发,进行脉冲激光沉积法时的基材的温度例如优选为850℃以上,更优选为900℃以上。
71.实施本公开的方法时的基材的温度能够通过公知的方法进行测定。更具体而言,对于基材的温度,例如在使用如图1所示的脉冲激光沉积装置1那样的装置的情况下,能够作为在配置有基材40的支座(holder)放置热电偶而实际测得的值进行求出。
72.〈靶〉
73.本公开的方法中使用的靶含有氧化镓和氧化铋。
74.作为靶,例如能够使用氧化镓粒子与氧化铋粒子的烧结体。
75.如图7所示,至少在实施例的条件下,在本公开的方法中,在将含铋氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例设为了x at%、将靶中的铋的原子数相对于铋与镓的原子数的合计的比例设为了y at%、且将基材的温度设为了t℃时,认为具有满足以下的式(2)的倾向:
76.0.26-t/5000=x/y
ꢀꢀꢀꢀꢀ
(2)
77.因此,认为通过设定靶中的铋的原子数相对于铋与镓的原子数的合计的比例y at%和基材的温度t℃,以使得至少满足上述的式(2),能够使所形成的含铋氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例x at%为所希望的范围。
78.在此,铋的原子数相对于铋与镓的原子数的合计的比例为0.50%以上的含铋氧化镓系半导体膜具有特别低的能量带隙,因此,是优选的。
79.在此,关于上述式(2),为了x at%成为0.50at%以上,t和y被要求满足以下的式
(3):
80.0.26-t/5000≥0.50/y
ꢀꢀꢀꢀꢀꢀ
(3)
81.当对式子进行整理时,成为以下的式(1):
82.y≥1/(0.52-t/2500)
ꢀꢀꢀꢀꢀꢀ
(1)
83.因此,例如在意图使铋的原子数相对于铋与镓的原子数的合计的比例为约0.50%以上的情况下,能够设定y at%和t℃,以使得满足上述的式(1)。此外,在上述(1)~(3)中为x>0以及y>0。另外,t为650℃~1000℃。
84.靶中的铋的原子数相对于铋与镓的原子数的合计的比例优选为5.00at%~50.00at%。
85.靶中的铋的原子数相对于铋与镓的原子数的合计的比例可以为5.00at%以上、10.00at%以上、15.00at%以上或者20.00at%以上,可以为50.00at%以下、45.00at%以下、40.00at%以下或者35.00at%以下。
86.〈激光强度〉
87.在本公开的方法中,激光强度为1.0j/cm2~10.0j/cm2。
88.在激光强度比1.0j/cm2小的情况下,成膜速度小,因此,在成膜时容易引起铋的脱离。因此,无法使所形成的氧化镓系半导体膜中充分地含有铋。
89.另一方面,在激光强度超过10.0j/cm2的情况下,靶中的氧化镓以及氧化铋有可能以未充分地分解的微粒的状态附着于基材。认为这样的微粒向基材的附着会导致所形成的氧化镓系半导体膜的高电阻化、耐压降低以及漏电流的增加等电特性的降低。
90.激光强度可以为1.0j/cm2以上、2.0j/cm2以上、3.0j/cm2以上或者4.0j/cm2以上,可以为10.0j/cm2以下、9.0j/cm2以下、8.0j/cm2以下或者7.0j/cm2以下。
91.此外,激光例如可以为脉冲状的紫外线激光。此外,紫外线激光例如可以为arf准分子激光。
92.另外,对于激光的强度,能够通过公知的方法进行测定。更具体而言,对于激光的强度,例如在使用如图1所示的脉冲激光沉积装置1那样的装置的情况下,能够作为将在即将通过石英窗60之前的位置用焦耳计(joule meter)实际测得的激光强度除以激光的照射面积而得到的值来进行求出。
93.《含铋氧化镓系半导体膜》
94.本公开的含铋氧化镓系半导体膜例如能够通过上述的方法来形成。本公开的含铋氧化镓系半导体膜可以配置在本公开的方法中所记载的基材上。
95.本公开的含铋氧化镓系半导体膜的铋的原子数相对于铋与镓的原子数的合计的比例为0.50at%~10.00at%,并且,该含铋氧化镓系半导体膜具有β-gallia结构。
96.作为面向中高耐压的功率半导体器件用途的半导体膜,优选带隙能量比未添加异种元素的氧化镓系半导体膜低1.0ev~2.0ev左右。
97.关于这一点,当考虑氧化镓(带隙能量:约4.8ev)与氧化铋(带隙能量:约2.8ev)的带隙能量之差时,为了使得降低1.0ev~2.0ev左右的带隙能量,认为了在含铋氧化镓系半导体膜中,需要使铋的原子数相对于铋与镓的原子数的合计的比例为50.00at%以上。
98.然而,当使铋的原子数相对于铋与镓的原子数的合计的比例为50.00at%以上时,结晶性会降低。即,难以维持含铋氧化镓系半导体膜的β-gallia结构。
99.在含铋氧化镓系半导体膜的结晶性过低的情况下,可能会导致高电阻化、耐压降低、漏电流增加等、含铋氧化镓系半导体膜的电特性降低。
100.关于这一点,本公开的含铋氧化镓系半导体膜的铋的原子数相对于铋与镓的原子数的合计的比例为0.50at%~10.00at%,因此,含铋氧化镓系半导体膜的β-gallia结构得以维持。
101.进一步,尽管铋的原子数相对于铋与镓的原子数的合计的比例远远小于50.00at%,但具有比未添加异种元素的氧化镓系半导体低1.0ev~2.0ev左右的带隙能量。虽然其原理尚不明确,但认为这是铋与氧的结合所带来的特异效果。
102.这样,本公开的含铋氧化镓系半导体膜的铋的含量低,因此,在β-gallia结构被维持的同时,另一方面,具有低的带隙能量。
103.此外,当铋的原子数相对于铋与镓的原子数的合计的比例比0.50at%小时,无法使带隙能量充分地降低。另一方面,当铋的原子数相对于铋与镓的原子数的合计的比例比10.00at%大时,无法维持含铋氧化镓系半导体膜的高结晶性。即,无法维持β-gallia结构。
104.铋的原子数相对于铋与镓的原子数的合计的比例可以为0.50at%以上、0.70at%以上、1.00at%以上或者1.50at%以上,可以为10.00at%以下、5.00at%以下、4.50at%以下或者3.50at%以下。
105.铋的原子数相对于铋与镓的原子数的合计的比例特别优选为0.70at%以上。这是由于在铋的原子数的比例为这样的值的情况下能够实现特别小的带隙能量。
106.本公开的含铋氧化镓系半导体膜具有β-gallia结构。在此,含铋氧化镓系半导体膜“具有β-gallia结构”是指不要求与β型ga2o3具有的结晶构造完全一致而具有维持了与β型ga2o3具有的结晶构造同样的周期构造的构造。例如,含铋氧化镓系半导体膜“具有β-gallia结构”可以是β型ga2o3具有的结晶构造中的、镓位点的一部分由铋置换后的构造。
107.x射线衍射2θ-ω测定中的源于β-gallia结构的(-603)面的峰的半值宽度可以为0.40
°
~1.00
°

108.峰的半值宽度是表示结晶性的程度的指标,一般而言,认为峰的半值宽度越小,结晶性越高。若源于β-gallia结构的峰的半值宽度为1.00
°
以下,则可以说作为氧化镓系半导体膜具有足够高的结晶性。
109.源于β-gallia结构的峰的半值宽度可以为0.40
°
以上、0.45
°
以上、0.50
°
以上或者0.55
°
以上,可以为1.00
°
以下、0.95
°
以下、0.90
°
以下或者0.85
°
以下。
110.本公开的含铋氧化镓系半导体膜的膜厚不被特别地限定,可以为30nm~300nm。
111.本公开的含铋氧化镓系半导体膜的膜厚可以为30nm以上、50nm以上、80nm以上或者100nm以上,可以为300nm以下、250nm以下、200nm以下或者150nm以下。
112.本公开的含铋氧化镓系半导体膜具有的带隙能量可以为3.8ev以下。
113.一般而言,认为没有添加异种元素的氧化镓系半导体膜的带隙能量为4.8ev左右。在面向中高耐压的功率半导体器件用途的氧化镓系半导体膜中,3.8ev以下的带隙能量可以说足够小。
114.本公开的含铋氧化镓系半导体膜具有的带隙能量可以为3.8ev以下、3.6ev以下、3.4ev以下或者3.2ev以下,可以为2.8ev以上、2.9ev以上、3.0ev以上或者3.1ev以上。
115.《含铋氧化镓系半导体元件》
116.本公开的含铋氧化镓系半导体元件具有基材和层叠在基材上的本公开的含铋氧化镓系半导体膜。基材可以采用在本公开的方法中记载的基材。
117.本公开的含铋氧化镓系半导体元件例如能够使用于功率半导体。更具体而言,能够作为整流、频率变换、稳压器(regulator)或者逆变器(inverter)来使用。
118.《实施例1~5以及比较例1和2》
119.〈实施例1〉
120.使用脉冲激光沉积装置,在基材上形成了氧化镓系半导体膜。具体而言,如以下那样形成了氧化镓系半导体膜。
121.在真空腔室内放入基材和靶,进行了抽真空。接着,向真空腔室内以1.0sccm的流量流通作为气氛气体的氧气,将真空腔室内调整为了2.0pa。接着,通过基材加热机构,将基材加热至900℃。对靶照射烧蚀激光,在基材上形成了氧化镓系半导体膜。
122.在此,作为靶,使用了混合氧化镓粉末和氧化铋粉末、进行压粉以及烧成而得到靶。在靶中,铋的原子数相对于铋与镓的原子数的合计的比例为25.00at%。
123.另外,作为基材,使用了αal2o3(0001)面基板。
124.另外,作为烧蚀激光,使用了作为紫外线的arf准分子激光。激光的强度为1.0j/cm2。
125.将实施例1的方法的条件汇总在了表1。
126.〈实施例2〉
127.除了使基材的加热温度为650℃之外,与实施例1同样地形成了氧化镓系半导体膜。
128.将实施例2的方法的条件汇总在了表1。
129.〈实施例3〉
130.除了使靶中的相对于铋与镓的合计的铋的量为6.25at%之外,与实施例1同样地形成了氧化镓系半导体膜。
131.将实施例3的方法的条件汇总在了表1。
132.〈实施例4〉
133.除了使靶中的相对于铋与镓的合计的铋的量为12.50at%之外,与实施例1同样地形成了氧化镓系半导体膜。
134.将实施例4的方法的条件汇总在了表1。
135.〈实施例5〉
136.除了使靶中的相对于铋与镓的合计的铋的量为50.00at%之外,与实施例1同样地形成了氧化镓系半导体膜。
137.将实施例5的方法的条件汇总在了表1。
138.〈比较例1〉
139.除了使激光的强度为0.5j/cm2之外,与实施例1同样地形成了氧化镓系半导体膜。
140.将比较例1的方法的条件汇总在了表1。
141.〈比较例2〉
142.除了使激光的强度为0.5j/cm2之外,与实施例2同样地形成了氧化镓系半导体膜。
143.将比较例2的方法的条件汇总在了表1。
144.〈x射线光电子能谱测定〉
145.对通过各例子的方法得到的氧化镓系半导体膜进行了x射线光电子能谱测定。根据测定结果,算出了氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)。
146.将测定结果汇总在了表1。
147.〈光的透射率测定〉
148.对通过各例子的方法得到的氧化镓系半导体膜测定了光的透射率。基于测定结果,算出了相对于不包含异种元素的氧化镓系半导体膜的带隙能量的减少量。
149.将算出结果汇总在了表1。
150.此外,未添加异种元素的纯氧化镓系半导体膜的带隙能量为4.8ev。
151.〈x射线衍射2θ-ω测定〉
152.对通过各例子的方法得到的氧化镓系半导体膜进行了x射线衍射2θ-ω测定。根据测定结果,求出了源于β-gallia结构的(-603)面的峰的半值宽度。
153.将测定结果汇总在了表1。
154.〈结果〉
155.将实施例1~5以及比较例1和2的方法的条件以及通过这些方法得到的氧化镓系半导体膜的性能的测定结果表示在了表1以及图2~7。
156.此外,在表1中,“靶中的bi含量(at%)”意味着靶中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)。另外,在表1中,“ga2o3系半导体膜中的bi含量(at%)”意味着氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)。在此,“ga2o3系半导体膜中的bi含量(at%)”的检测下限为0.5at%,因此,关于无法检测到铋的例子,记载为“<0.5”。
157.表1
158.159.如表1和图2所示,在基材的加热温度为650℃或者900℃、且激光强度为1.0j/cm2的实施例1~5中,氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例分别依次为2.00at%、3.10at%、0.70at%、1.40at%以及3.70at%。与此相对,在基材的加热温度为650℃或者900℃、且激光强度为0.5j/cm2的比较例1和2中,氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例均比作为检测下限的0.50at%小。
160.另外,如表1和图3所示,在实施例1~5中,氧化镓系半导体膜的带隙能量的减少量分别依次为1.6ev、1.6ev、1.5ev、1.5ev以及1.7ev。换言之,在这些例子中,氧化镓系半导体膜的带隙能量分别依次为3.2ev、3.2ev、3.3ev、3.3ev以及3.1ev。
161.该结果意味着在实施例1~5中充分地得到了带隙能量减少的效果。
162.与此相对,在比较例1和2中,带隙能量的减少量均为0.0ev。换言之,在这些例子中,氧化镓系半导体膜的带隙能量为4.8ev。
163.在通过比较例1和2的方法形成的氧化镓系半导体膜中,氧化镓系半导体膜的带隙能量为4.8ev,这意味着没有得到带隙能量减少的效果。
164.另外,如表1以及图4~6所示,在实施例1~5中,源于氧化镓系半导体膜的β-gallia结构的(-603)面的峰的半值宽度分别依次为0.67
°
、1.18
°
、0.49
°
、0.52
°
以及0.90
°
。该结果意味着在各例子中维持了氧化镓系半导体膜的β-gallia结构。其中,关于实施例1以及实施例3~5、特别是实施例3,也可以说维持了非常高的结晶性。
165.在比较例1和2中,源于氧化镓系半导体膜的β-gallia结构的(-603)面的峰的半值宽度分别依次为0.48
°
和0.71
°
。在比较例1和2中,在氧化镓系半导体膜中几乎不含有铋,因此,认为维持了高的结晶性。
166.图8是关于实施例1~5以及比较例1和2的试料汇总了成膜条件和结果的图。
167.如图8所示,作为用于通过使用了含有氧化镓和氧化铋的靶的脉冲激光沉积法形成具有高结晶性的含铋氧化镓系半导体膜的条件,可导出使基材的温度为650℃~1000℃、且使激光强度为1.0j/cm2~10.0j/cm2。
168.《实施例1、实施例4以及实施例6~8》
169.除了使基材的温度和靶中的相对于铋与镓的合计的铋的量为以下的表2所示那样之外,与实施例1同样地形成了实施例6~8的氧化镓系半导体膜。
170.〈x射线光电子能谱测定〉
171.通过与上述的x射线光电子能谱测定同样的方法,分别算出了实施例1、实施例4以及实施例6~8的氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)。另外,算出了氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例(at%)和靶中的铋相对于铋与镓的合计的比例(at%)的比率。
172.〈结果〉
173.将实施例1、实施例4以及实施例6~8的方法的条件和通过这些方法得到的氧化镓系半导体膜中的与铋的量有关的算出结果表示在了表2和图7。
174.表2
[0175][0176]
如图7所示,根据实施例1、实施例4以及实施例6~8,可以说在激光强度为1.0j/cm2的条件下,在将氧化镓系半导体膜中的铋的原子数相对于铋与镓的原子数的合计的比例设为了x at%、将靶中的铋的原子数相对于铋与镓的原子数的合计的比例设为了y at%、且将基材的温度设为了t℃时,具有满足以下的式(2)的倾向:
[0177]
0.26-t/5000=x/y
ꢀꢀꢀꢀꢀ
(2)
[0178]
在此,关于上述式(2),为了x at%为0.50at%以上,t和y被要求满足以下的式(3):
[0179]
0.26-t/5000≥0.50/y
ꢀꢀꢀ
(3)
[0180]
对式子进行整理时,成为以下的式(1):
[0181]
y≥1/(0.52-t/2500)
ꢀꢀꢀ
(1)。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献