一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

2,2的制作方法

2022-06-25 04:30:13 来源:中国专利 TAG:

2,2
′‑
联吡啶骨架双膦配体及其制备方法、应用
技术领域
1.本发明涉及氢甲酰化反应催化剂领域,具体涉及2,2
′‑
联吡啶骨架双膦配体及其制备方法、应用。


背景技术:

2.氢甲酰化反应是指烯烃与合成气在过渡金属络合催化剂作用下反应生成醛的反应过程,其产生的醛及其衍生物被广泛地用作合成增塑剂、表面活性剂、溶剂和香料等的原料。目前,氢甲酰化反应已成为工业应用中最重要的化学反应之一。
3.膦配体在氢甲酰化反应的催化剂体系中发挥着重要作用,膦配体与铑金属配合物组成的催化剂对于氢甲酰化反应的反应性能有非常重要的影响,这使得类型各异的膦配体不断被开发出来用于制备氢甲酰化反应的催化剂。其中,适当刚性骨架取代的多齿膦配体制备的催化剂在氢甲酰化反应中表现出更优异的催化性能。
4.现有的多齿膦配体主要有联苯骨架取代的双齿膦配体bisbi,二苯甲酮骨架取代的双齿膦配体,联苯骨架取代的四齿膦配体等,这类多齿膦配体虽然能够利用膦、铑配位发挥空间和电子效应,但是,在与铑配位过程中膦配体两个苯环之间的旋转容易造成对铑的配位能力较低,降低催化体系的催化性能。


技术实现要素:

5.本发明的一个目的在于提供2,2
′‑
联吡啶骨架双膦配体,通过现有的多齿膦配体的骨架进行设计以改善膦配体与铑的配合,解决现有技术中多齿膦配体由于骨架中的两个苯环之间将产生旋转而造成的对铑的配位能力较低问题,进一步提高铑的固有催化性能。
6.本发明通过下述技术方案实现:
7.2,2
′‑
联吡啶骨架双膦配体,该双膦配体的结构式如式i所示:
[0008][0009]
式i中,r1和r2各自独立地选自取代或未取代的以下基团:
[0010][0011]
其中,y为o、s、c1~c6的烷基、nch3、
[0012]
所述取代是指被选自下组的一个或多个取代基所取代:卤素、磺酸基、c1~c6的烷基、 c1~c6的卤代烷基、c1~c6的烷氧基、c1~c6的烷酰基、c1~c6的酯基、腈基、c1~c6的磺酸基。
[0013]
本技术方案中,双膦配体采用2,2
′‑
联吡啶骨架,其在与铑络合物构成催化体系时,不仅可以通过p与铑络合物配位得到结构式如式iii所示的化合物,还可以通过吡啶上的n与铑络合物配位形成结构式如式iv或式v所示的化合物。
[0014][0015]
因此,在配位过程中,两个吡啶环之间相对旋转后,双膦配体可以通过p或n与铑络合物配合,利用n的辅助配位能力显著地提高了铑的固有催化性能,进而提高了催化体系的
催化性能,对于不同结构的烯烃的氢甲酰化反应,都能获得较好的反应活性和选择性。
[0016]
式i中,基团r1和r2可以相同,也可以不同,优选地,基团r1和r2相同。r1和r2可独自地选自前述取代或未取代的基团。其中,所述取代可以是一取代、二取代、三取代、四取代、五取代、六取代、七取代或八取代,优选地,所述取代为一取代或二取代。在部分实施例中,r1和r2采用未被取代的基团。
[0017]
本领域技术人员应当理解,具有式i所示结构式的化合物也应当包括该化合物的对映体、消旋体或非对映异构体。
[0018]
本技术方案所提供的双膦配体采用2,2
′‑
联吡啶骨架,在用于氢甲酰化反应时,与现有催化体系相比,不仅利用膦与铑配位发挥空间和电子效应,还利用骨架上n的配位能力,显著提高双膦配体与铑络合物的配位能力,改善铑的固有催化性能;此外,用于合成该双膦配体的原料易得、合成条件温和、合成步骤简单,有利于工业化批量生产,具有广泛的推广价值。
[0019]
进一步地,所述r1和r2各自独立地选自取代或未取代的以下基团:
[0020][0021]
其中,y为o、s、或ch2;
[0022]
所述取代是指被选自下组的一个或多个取代基所取代:卤素、磺酸基、c1~c6的烷基、 c1~c6的卤代烷基、c1~c6的烷氧基。
[0023]
进一步地,所述双膦配体具有以下任一种结构式:
[0024][0025]
本发明的另一个目的在于提供前述任一种2,2
′‑
联吡啶骨架双膦配体的制备方法,该制备方法的原料易得、合成步骤简单、容易放大生产获得,具有很高的实用价值,并且,通过该方法制备得到的双膦配体具有很好的稳定性,更重要的是,该双膦配体能够利用
吡啶上的n 进行辅助配位,显著地提高催化体系的催化性能。
[0026]
具体地,该制备方法包括以下步骤:将结构式为式ii的化合物与lipr1r2或napr1r2在惰性气氛下反应得到式i的化合物;
[0027][0028]
其中,x为卤素。
[0029]
本技术方案中,利用结构式ii的化合物合成结构式i的化合物的合成路线为:
[0030][0031]
其中,结构式ii的化合物可以按照文献[j]journal of organic chemistry,2014,79,777-782 中报道的方法进行合成获得。
[0032]
进一步地,向结构式ii的化合物溶液中缓慢加入lipr1r2溶液或napr1r2溶液并保持温度小于10℃,加完后升至室温反应直至反应结束。本技术方案中,将结构式ii加入至有机溶剂中溶解得到结构式ii的化合物溶液,将lipr1r2或napr1r2加入至有机溶剂中溶解得到 lipr1r2溶液或napr1r2溶液。之后,在低温下,优选为0~5℃下,将lipr1r2溶液或napr1r2溶液滴加至结构式ii的化合物溶液中,并在滴加完毕后升温至室温反应。反应完毕,经萃取、干燥、过滤、浓缩、纯化等后处理工序制得结构式i的化合物。
[0033]
在部分实施例中,所述的有机溶剂为苯、甲苯、二甲苯、三甲苯、乙醚、四氢呋喃中的一种或多种。
[0034]
在一个或多个实施例中,所述惰性气氛为氩气或氮气。
[0035]
进一步地,lipr1r2或napr1r2与式ii的化合物的摩尔比为2:1~10:1。
[0036]
本发明的又一个目的在于提供前述任一种2,2
′‑
联吡啶骨架双膦配体的应用,所述双膦配体用于烯烃氢甲酰化或烯烃异构化氢甲酰化反应的催化体系。2,2
′‑
联吡啶骨架双膦配体与铑络合物构成催化剂组合物,用于烯烃氢甲酰化或烯烃异构化氢甲酰化反应,以提高原料烯烃的转化率、成醛率、以及直链醛的选择性。优选地,用于c2~c
18
烯烃氢甲酰化或c4~c
18
烯烃异构化氢甲酰化反应。
[0037]
在一个或多个实施例中,所述铑络合物为rh(acac)(co)2、rh(acac)(co)(pph3)、 hrh(co)(pph3)3、rhcl3、[rh(cod)cl]2、[rh(co)2cl]2、rh(acac)(c2h4)、[rh(c2h4)2cl]2中的至少一种;其中,acac为乙酰丙酮,cod为1,5-环辛二烯。
[0038]
进一步地,所述应用包括以下步骤:原料烯烃、催化剂组合物和溶剂混合均匀后形
成混合物,所述混合物与一氧化碳和氢气构成的合成气反应直至反应完成;所述催化剂组合物包括所述双膦配体和铑络合物。
[0039]
在部分优选的实施例中,在反应釜中加入原料烯烃、催化剂组合物、溶剂后,充入合成气(co:h2=1:1)置换反应釜数次后,充入合成气并加热升温反应,反应过程中保持反应釜内总压为0.2~4mpa、温度为60~120℃。
[0040]
进一步地,所述催化剂组合物的膦铑比为2~40。优选地,催化剂组合物的膦铑比为2~20,进一步优选地,催化剂组合物的膦铑比为2~10。
[0041]
本发明与现有技术相比,具有如下的优点和有益效果:
[0042]
1、本发明的双膦配体采用2,2
′‑
联吡啶骨架,在用于氢甲酰化反应时,与现有催化体系相比,不仅利用膦与铑配位发挥空间和电子效应,还利用骨架上n的配位能力,显著提高双膦配体与铑络合物的配位能力,改善铑的固有催化性能;
[0043]
2、本发明用于合成该双膦配体的原料易得、合成条件温和、合成步骤简单,有利于工业化批量生产,具有广泛的推广价值;
[0044]
3、本发明的2,2
′‑
联吡啶骨架双膦配体与铑络合物构成催化剂组合物,用于烯烃氢甲酰化或烯烃异构化氢甲酰化反应,能够有效地提高原料烯烃的转化率、成醛率、以及直链醛的选择性。
具体实施方式
[0045]
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
[0046]
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法即可制备。
[0047]
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或化工领域常规的纯度要求。本发明所有原料,其牌号和简称均属于本领域常规牌号和简称,每个牌号和简称在其相关用途的领域内均是清楚明确的,本领域技术人员根据牌号、简称以及相应的用途,能够从市售中购买得到或者通过常规方法制备得到。
[0048]
本发明对所述取代基的表达方式没有特别限制,均采用本领域技术人员熟知的表达方式,本领域技术人员基于常识,可根据其表达方式正确理解其含义。
[0049]
【实施例1】
[0050]
双膦配体1的制备:
[0051]
[0052]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加lipph2(8.217g,42.8mmol)的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0053]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到8.8g双膦配体1,收率为82%。
[0054]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ-13.33ppm。
[0055]
【实施例2】
[0056]
双膦配体2的制备:
[0057][0058]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加lip(p-cf3ph)2(13.776g,42mmol) 的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0059]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到9.01g双膦配体2,收率为78%。
[0060]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ-12.12ppm。
[0061]
【实施例3】
[0062]
双膦配体3的制备:
[0063][0064]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水
四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加lip(p-ch3ph)2(6.8g,40mmol) 的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0065]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到9.11g双膦配体3,收率为77%。
[0066]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ-14.53ppm。
[0067]
【实施例4】
[0068]
双膦配体4的制备
[0069][0070]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加二吡咯膦锂(9.46g,42mmol) 的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0071]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到8.4g双膦配体4,收率为85%。
[0072]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ78.21ppm。
[0073]
【实施例5】
[0074]
双膦配体5的制备
[0075][0076]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加二吲哚膦锂(10.8g,40mmol) 的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0077]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到11.99g双膦配体5,收率为87%。
[0078]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ73.81ppm。
[0079]
【实施例6】
[0080]
双膦配体6的制备
[0081][0082]
在氩气氛下,向500ml三口瓶,加入结构式ii的化合物(6.652g,19.45mmol)和无水四氢呋喃(200ml),其中x为br取代;在0~5℃下,滴加相应锂化合物(8.24g,40mmol) 的四氢呋喃溶液(100ml),滴加完毕后,升至室温下反应4小时。
[0083]
加入100ml蒸馏水,用二氯甲烷萃取(3
×
100ml),有机相用无水硫酸镁干燥后,过滤浓缩,残余物经柱层析纯化,得到6.32g双膦配体6,收率为56%。
[0084]
核磁共振波谱法结构表征:
31
p nmr(162mhz,氘代氯仿)δ-15.65ppm。
[0085]
【实施例7】
[0086]
双膦配体用于1-己烯的氢甲酰化反应
[0087][0088]
在50ml高压反应釜中,加入0.15mmol双膦配体,0.05mmol rh(acac)(co)2,50mmol 1
‑ꢀ
己烯,5ml甲苯,随后充入合成气(co:h2=1:1)置换反应釜三次,再次充入合成气,保持反应釜内总压为2mpa,迅速升温至80℃并开始搅拌,反应2h后停止搅拌,并迅速冷却至室温,取出反应液分析。分析结果如表1所示:
[0089]
表1
[0090]
膦配体转化率(%)成醛率(%)直链醛选择性(%)199989829998993979796499939959994996999497
[0091]
【实施例8】
[0092]
双膦配体用于苯乙烯的氢甲酰化反应
[0093][0094]
在50ml高压反应釜中,加入0.15mmol双膦配体,0.05mmol rh(acac)(co)2,50mmol苯乙烯,5ml甲苯,随后充入合成气(co:h2=1:1)置换反应釜三次,再次充入合成气,保持反
应釜内总压为1mpa,迅速升温至100℃并开始搅拌,反应2h后停止搅拌,并迅速冷却至室温,取出反应液分析。分析结果如表2所示:
[0095]
表2
[0096][0097][0098]
【实施例9】
[0099]
双膦配体用于降冰片二烯的氢甲酰化反应
[0100][0101]
在50ml高压反应釜中,加入0.15mmol双膦配体,0.05mmol rh(acac)(co)2,50mmol降冰片二烯,5ml甲苯,随后充入合成气(co:h2=1:1)置换反应釜三次,再次充入合成气,保持反应釜内总压为3mpa,迅速升温至90℃并开始搅拌,反应4h后停止搅拌,并迅速冷却至室温,取出反应液分析。分析结果如表3所示:
[0102]
表3
[0103]
膦配体转化率(%)成醛率(%)双醛选择性(%)199999229999953999990499999759999986999991
[0104]
通过表1~表3可以看出,包含了本发明的2,2
′‑
联吡啶骨架双膦配体的催化剂体系在进行烯烃氢甲酰化反应时具有高转化率和成醛率。并且,利用氮的配位能力,改善铑的固有催化性能,对于不同结构的烯烃的氢甲酰化反应,都能获得较好的反应活性和选择性。
[0105]
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献