一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种利用甲醇生物转化的重组解脂耶氏酵母基因工程菌及其构建方法和应用与流程

2022-03-02 00:53:32 来源:中国专利 TAG:


1.本发明属于生物工程领域,特别涉及利用甲醇生物转化的重组解脂耶氏酵母基因工程菌及其构建和应用。


背景技术:

2.随着代谢工程的迅猛发展以及合成生物学的崛起,人类改造微生物作为细胞工厂进行生物制造的能力显著提高。近年来,随着化石资源的日益枯竭,甲醇作为可再生生物质原料在生物转化领域有着巨大的商业价值和市场潜力。开发非传统碳源甲醇的生物转化利用正日益受到国内外研究者的重视,不仅可以降低工业生物转化的原料成本,还可以更好地合理利用甲醇资源。目前在天然甲基营养菌中已打通甲醇到氨基酸、甲羟戊酸、戊二胺以及单细胞蛋白等多种化学品的生物合成路线,由于天然甲基营养型菌株存在耐受性差、不能以甲醇为唯一碳源以及利用效率低等问题,相对来说模式菌株例如大肠杆菌、酿酒酵母等模式微生物的代谢网络清晰、遗传改造工具成熟,更有利于作为底盘细胞实现甲醇到各种化学品的生物合成。然而模式菌株仍然存在耐受性差,利用效率低等问题。有研究报道解脂耶氏酵母能够以乙醇为碳源产柠檬酸,可见解脂耶氏酵母能够产大量的醇脱氢酶,且其耐酸能力较强、基因工程改造手段成熟,因此将解脂耶氏酵母作为底盘细胞,将毕赤酵母中的甲醇代谢路径引入其中,有望实现甲醇到高附加值产物的生物转化。
3.cn 201710796917.0公开一种生物转化甲醇代谢途径,在大肠杆菌中人工构建甲醇的代谢途径,该途径简洁,只需两步即可进入大肠杆菌的中央代谢途径。并通过对其途径上的关键酶—甲醛裂合酶(formolase)进行了定向进化,通过全细胞催化得筛选得到了有益突变克隆子,提高了甲醛裂合酶的酶活,然后组装代谢途径上的相关基因,得到了甲醇利用工程菌,在以甲醇为唯一碳源的培养基中进行培养,并通过培养基的优化以及基因敲除等手段实现了甲醇的高效利用。
4.柠檬酸是一种广泛分布于动植物与微生物细胞中的有机酸,其用途较为广泛,如在食品行业,可作为ph调节剂、酸味剂、抗氧化剂;在医药领域,可用作矫味剂以及抗凝血剂;在化学工业领域,可用作调色剂、缓冲剂以及凝胶剂。若能以廉价的还原性的底物甲醇为原料,可以在一定程度上降低成本。


技术实现要素:

5.发明目的:本发明的目的在于提供一种利用合成生物学的方法构建可以利用甲醇进行代谢的菌株,并利用该菌株发酵产柠檬酸,解决了传统产柠檬酸成本高的问题。
6.为实现上述目的,本发明的技术方案如下:
7.本发明提出了一种利用甲醇生物转化的重组解脂耶氏酵母基因工程菌,其是在宿主菌解脂耶氏酵母的基因组中导入甲醇氧化酶基因aox、过氧化氢酶基因cta、二羟丙酮合酶基因das、二羟丙酮激酶基因dak、木糖还原酶基因xyr、木糖醇脱氢基因xdh、木酮糖激酶
基因xyk、1,6-果糖双磷酸酶基因fbp、1,6-二磷酸果糖醛缩酶基因fba和转醛缩酶基因tal后得到,其中,所述木糖还原酶基因xyr、木糖醇脱氢基因xdh和木酮糖激酶基因xyk来源于季也蒙毕赤酵母。
8.其中,所述甲醇氧化酶基因aox的ncbi-geneid为8201223;所述二羟丙酮合酶基因das的ncbi-geneid为8199663;所述过氧化氢酶基因cta的ncbi-geneid为8198267;所述二羟丙酮激酶基因dak的ncbi-geneid为8200330;所述木糖还原酶xyr的ncbi-geneid为5127438;所述木糖醇脱氢酶xdh的ncbi-geneid为mf139767.1;所述木酮糖激酶xyk的ncbi-geneid为5124047;所述1,6-果糖双磷酸酶fbp的ncbi-geneid为8196585;所述1,6-二磷酸果糖醛缩酶fba的ncbi-geneid为8198238;所述转醛缩酶基因tal的ncbi-geneid为8199670。
9.优选地,所述宿主菌为解脂耶氏酵母po1f(yarrowia lipolytica po1f)。
10.本发明进一步提出了上述重组解脂耶氏酵母基因工程菌的构建方法,包括如下步骤:
11.(1)向解脂耶氏酵母po1f(yarrowia lipolytica po1f)的基因组中导入甲醇代谢模块得到菌株y001,所述甲醇代谢模块包含甲醇氧化酶基因aox、过氧化氢酶基因cta、二羟丙酮合酶基因das、和二羟丙酮激酶基因dak;
12.(2)在y001基础上导入季也蒙毕赤酵母来源的木糖代谢模块,进一步结合人工驯化,得到可以利用木糖作为唯一碳源的菌株y002,所述季也蒙毕赤酵母来源的木糖代谢模块包含木糖还原酶基因xyr、木糖醇脱氢基因xdh和木酮糖激酶基因xyk;
13.(3)将毕赤酵母中木酮糖-5-磷酸再生的关键基因1,6-果糖双磷酸酶基因fbp、1,6-二磷酸果糖醛缩酶基因fba和转醛缩酶基因tal引入菌株y002中,得到重组解脂耶氏酵母基因工程菌y003。
14.具体地,步骤(1)中,构建tef-aox1-cyc1t、tef-das-tcyc1、pdc1p-cta-tdh2t、pgpd-dak-txpr2表达框,通过多片段克隆的方法,将四个表达框与113质粒连接并转化至e.coli dh5α中。将测序正确的质粒通过酶切得到基因重组片段,将基因重组片段转化至宿主菌中得到菌株y001;步骤(2)中,构建tef-xyr-cyc1t、tef-xdh-cyc1t、tef-xyk-cyc1t表达框,通过多片段克隆的方法,将三个表达框与pki质粒链接转化至e.coli dh5α中,将测序正确的质粒通过酶切得到基因重组片段,将基因重组片段转化至宿主菌中得到菌株y002;步骤(3)中,构建tef-fbp-cyc1t、tef-fba-cyc1t、tef-tal-cyc1t表达框,通过多片段克隆的方法,将三个表达框与pan1312质粒链接转化至e.coli dh5α中,将测序正确的质粒通过酶切得到基因重组片段,将基因重组片段转化至宿主菌中得到菌株y003。
15.本发明进一步提出了上述重组解脂耶氏酵母基因工程菌在发酵产柠檬酸中的应用。
16.具体地,利用重组解脂耶氏酵母基因工程菌以甲醇与木糖为共底物发酵生产柠檬酸。
17.更具体地,通过如下方法生产柠檬酸:
18.(1)试管种子培养:将重组解脂耶氏酵母基因工程菌接种至试管的种子培养基中培养,
19.(2)摇瓶种子培养:将试管种子培养液接种至摇瓶的种子培养基中培养;
20.(3)将摇瓶种子培养液接种到发酵培养基中发酵培养,获取柠檬酸,
21.其中,所述发酵培养基配方如下:2.0g/l nacl,2.0g/l k2hpo4,2.0g/l kh2po4,5.0g/l酵母粉,1.0g/l mgcl2·
6h2o,0.6g/l nh4cl,0.05g/l cacl2·
2h2o,2.0g/l fecl2·
4h2o,0.5g/l kcl,木糖20g/l,甲醇20g/l。
22.优选地,试管种子培养和摇瓶种子培养的培养温度为29℃;培养时间18-22h;所述种子培养基配方如下:蛋白胨20g/l,酵母粉10g/l,葡萄糖20g/l;甲醇浓度为20g/l。
23.优选地,将摇瓶种子培养液按照10%的接种量接种到发酵培养基中发酵培养。
24.有益效果:本发明利用合成生物学的方法将甲醇同化途径、木糖利用途径及过氧化物酶体内木桐糖五磷酸循环途径引入解脂耶氏酵母中,从而实现解脂耶氏酵母酵母以非食品级原料甲醇和木糖作为共底物碳源生产柠檬酸,在一定的程度上降低了生产成本,具有重大的意义和经济价值。
附图说明
25.图1为本发明的基因工程菌y003代谢图;
26.图2为基因工程菌y003利用木糖及不同浓度甲醇细胞生长图;
27.图3为基因工程菌y003在不同浓度甲醇下的甲醇消耗图;
28.图4为基因工程菌y003利用甲醇和木糖共底物产柠檬酸图。
具体实施方式
29.下面通过具体的实施例详细说明本发明的技术方案。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径中获得
30.实施例1:基因工程菌y001的构建与鉴定。
31.构建质粒113-gpd-tef-das-dak-pki-aox-cta的具体步骤为:
32.将基因甲醇氧化酶基因aox、过氧化氢酶基因cta、二羟丙酮合酶基因das、和二羟丙酮激酶基因dak从毕赤酵母gs115基因组中通过聚合酶链式反应(pcr)技术扩增出来。其中,基因aox和das与tef启动子和cyc终止子组成tef-aox1-cyc1t、tef-das-tcyc1表达框。基因cta与pdc启动子和tdh终止子组成pdc1p-cta-tdh2t表达框。基因dak与启动子gpd和终止子txpr组成pgpd-dak-txpr2表达框。通过多片段克隆的方法,将四个表达框与113质粒连接并转化至e.coli dh5α中。
33.利用not i限制性内切酶对113-das-dak-cta-aox重组质粒进行酶切,通过琼脂糖凝胶电泳鉴定酶切条带并进行回收,得出含有目的基因的回收片段das-dak-aox-cat。
34.构建菌株po1f/113-gpd-tef-das-dak-pki-aox-cta的具体步骤为:
35.1.解脂耶氏酵母感受态的制备(现配现用)
36.①
从-80℃低温保藏冰箱中取出解脂耶氏酵母划ypd平板,30℃培养24h;

挑选长势优良的单点接种于ypd试管中,30℃培养过夜后以1%的接种量接种于含有100ml的新鲜ypd摇瓶中继续培养;

待od600=1.0-1.2时,每50ml菌液分装到一个灭菌的ep管中,4200r/min离心8min,去上清;

用50ml灭菌水重悬菌泥,4200r/min离心8min,去上清;

向菌泥中加入50ml的0.1mol/l醋酸锂重悬菌泥,室温放置1h,4200r/min离心8min,去上清;

再次使用0.1mol/l的醋酸锂2ml清洗菌体后,向菌泥中加入2ml的0.1mol/l醋酸锂重悬细
胞,每50μl分装到一个灭菌后的1.5ml ep管中,待用。
37.2.取10μl单链鲑鱼精dna于100℃沸水中煮10min;
38.3.取转化的目的基因回收片段das-dak与aox-cat,与上步单链鲑鱼精dna混合,缓慢加入到50μl解脂耶氏酵母感受态细胞中,轻轻混匀后30℃,150r/min气浴15min;
39.4.向混合液中加入720μl 40%的聚乙二醇4000溶液,90μl 1mol/l的二硫苏糖醇,轻轻混匀,在温度为30℃,转速为225r/min摇床中培养60min;
40.5. 39℃热激10min,4200r/min离心10min,去上清;
41.6.加入1ml 0.1mol/l的醋酸锂重悬菌体,室温放置5min后,涂两块尿嘧啶和亮氨酸缺陷型平板,一块平板直接取100μl转化液涂布,一块平板涂100μl富集后的转化液,30℃培养2-3天。
42.挑取单菌落,进行菌落pcr验证,并提取解脂耶氏酵母的基因组进行基因组pcr验证。最终将pcr验证正确的菌株保藏于-80℃。
43.实施例2:分析检测方法。
44.(1)菌体密度的测定
45.发酵期间,每日定时取样,将菌液稀释至适当倍数(a600值在0.2-0.8之间),用紫外可见分光光度计于600nm处测定吸光值。菌液浊度od600=a600
×
稀释倍数。为确保实验数据的精确,菌体密度的测定要求现取现测。
46.(2)发酵产物的检测
47.通过高效液相色谱hplc high performance liquid chromatography)对解脂耶氏酵母发酵产物进行条件摸索,最终确定解脂耶氏酵母的发酵产物主要为柠檬酸,因此,本课题中主要使用高效液相色谱定量检测柠檬酸,具体检测方法如下:
48.取2ml新鲜的发酵液以12,000r/min,4℃离心3min,留取上清液,用流动相稀释到合适的倍数,通过0.22μm无菌针头式滤器过膜去除杂质,使用高效液相色谱(chromeleon server monitor,p680 pump,dionex,usa)定量检测产物含量。本文中高效液相色谱检测柠檬酸所使用的色谱柱为糖柱,0.5mm的稀硫酸为流动相,0.6ml/min的流速,55℃的柱温,215nm的紫外检测波长,每个样品的进样量为20μl。为确保产物的定量检测,柠檬酸的标准样品需现配现用,在检测样品前绘制柠檬酸的标准曲线。
49.(3)甲醇含量的检测
50.由于希尔曼测糖仪中不仅有葡萄糖检测模块,还有甲醇检测模块,通过甲醇模块中的醇氧化酶将甲醇催化生成甲醛以及过氧化氢,而过氧化氢则被过氧化氢酶分解出原子态氧,而后将无色还原型4-氨基安替比林与苯酚偶联氧化缩合成有色合物,通过测得有色化合物的在特定波长下的吸光度,从而计算出甲醇的浓度。取发酵液以12000r/min离心2min,取上清,将发酵液中的甲醇浓度稀释到0-1g/l,用测糖仪检测甲醇的浓度。
51.实施例3:重组菌株y003的甲醇与木糖共底物发酵条件的优化。
52.图1为基因工程菌y003的代谢图。首先,甲醇在解脂耶氏酵母的细胞器过氧化物酶体内通过甲醇氧化酶(aox)催化生成甲醛,与此同时生成的有毒物质过氧化氢通过过氧化氢酶催化产生无毒的水和氧气,随后甲醛与代谢前体物木酮糖五磷酸通过二羟丙酮合酶(das)及二羟丙酮激酶(dak)催化生成磷酸二羟丙酮进而进入中心代谢途径生产柠檬酸。木糖还原酶(xyr)、木糖醇脱氢(xdh)、木酮糖激酶(xyk)、1,6-果糖双磷酸酶(fbp)、1,6-二磷
酸果糖醛缩酶(fba)和转醛缩酶(tal)的强化表达能够提供前体物木酮糖五磷酸的循环供给。
53.利用重组菌株y003进行甲醇与木糖的共底物发酵培养。更具体地,通过如下方法生产柠檬酸:
54.(1)试管种子培养:将重组解脂耶氏酵母基因工程菌接种至试管的种子培养基中培养,
55.(2)摇瓶种子培养:将试管种子培养液接种至摇瓶的种子培养基中培养;
56.(3)将摇瓶种子培养液接种到发酵培养基中发酵培养,获取柠檬酸,
57.其中,所述发酵培养基配方如下:2.0g/l nacl,2.0g/l k2hpo4,2.0g/l kh2po4,5.0g/l酵母粉,1.0g/l mgcl2·
6h2o,0.6g/l nh4cl,0.05g/l cacl2·
2h2o,2.0g/l fecl2·
4h2o,0.5g/l kcl,木糖20g/l,不同浓度的甲醇(0g/l、5g/l、10g/l、15g/l、20g/l、25g/l)。
58.优选地,试管种子培养和摇瓶种子培养的培养温度为29℃;培养时间18-22h;所述种子培养基配方如下:蛋白胨20g/l,酵母粉10g/l,葡萄糖20g/l;甲醇浓度为20g/l。每24h取一次发酵液,进行菌体密度及甲醇消耗测定,结果如图2与图3所示,由于25g/l的甲醇浓度过高,对细胞伤害较大,因此细胞生长受到限制,相应的甲醇消耗量少。同时,以20g/l的甲醇为底物时甲醇的消耗最多。甲醇的代谢推动着菌株对木糖的需求,部分木酮糖-5-磷酸用来为甲醇的代谢提供前提,而木糖代谢所需的木酮糖-5-磷酸则需要更多的木糖代谢来提供。木糖的代谢为甲醇代谢提供前体,促进了甲醛的同化,减少了甲醛对细胞的伤害,从而保证了细胞的正常生长状态。
59.实施例4:重组菌株以木糖及甲醇共底物产柠檬酸。
60.以木糖及甲醇共底物产柠檬酸的步骤为:
61.(1)将基因工程菌株以接种量5%v/v接种到试管种子培养基中,29℃、220rpm活化22h,其中,种子培养基为蛋白胨20g/l,酵母粉10g/l,葡萄糖20g/l;
62.(2)将试管种子培养液接种至摇瓶的种子培养基中培养,29℃、220rpm培养24h,
63.(3)发酵产柠檬酸:将摇瓶种子培养液接种到发酵培养基中发酵培养,获取柠檬酸。
64.其中,所述发酵培养基配方如下:0.5-2.0g/l nacl,0.5-2.0g/l k2hpo4,0.5-2.0g/l kh2po4,1.0-5.0g/l酵母粉,0.2-1.0g/l mgcl2·
6h2o,0.1-0.6g/l nh4cl,0.01-0.05g/l cacl2·
2h2o,0.5-2.0g/l fecl2·
4h2o,0.1-0.5g/l kcl,木糖20g/l。
65.优选甲醇浓度20g/l。每24h取一次发酵液,进行菌体密度及柠檬酸产量测定,结果如图4所示,工程菌株y003能以20g/l木糖与20g/l甲醇为共底物产3.8g/l柠檬酸,相比于仅以20g/l木糖为底物产3.1g/l的柠檬酸,甲醇的添加提高了柠檬酸产量22.5%。
66.本发明提供了一种利用甲醇生物转化的重组解脂耶氏酵母基因工程菌的构建的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献