一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种超疏水多孔有机聚合物及负载其的耐酸碱超疏水涤纶织物及应用的制作方法

2022-02-22 20:18:51 来源:中国专利 TAG:


1.本发明属于化学及新材料技术领域,具体涉及一种耐酸碱超疏水涤纶织物的制备方法和应用。


背景技术:

2.随着石油的开采、运输过程中频繁发生的溢油事故以及日用品生产中含油和有机溶剂的工业废水不断排放,严重威胁着人类健康和生态环境。因此,寻找有效的油水分离方式是目前急需解决的问题之一。在过去的几十年里,撇油器、分散剂和固化剂等油水分离技术已经被广泛地应用,然而这些技术却具有分离效率低、浮力不足、选择性差的缺点;相比之下,吸附分离方法具有简单、高效的优势,并且成本相对较低。然而,该方法需要能够具有高效油水分离性能的特定材料,而传统吸收性材料(如活性炭和沸石等)也有吸收效率低、非选择性吸收和难以实现重复利用等缺点;因此迫切需要具有较高选择性和高分离效率的吸附材料。多孔有机聚合物具有多孔结构可控性和功能可设计性,因此,持久性有机污染物的表面结构特性可以在分子水平上进行调节,孔表面的设计将赋予多孔有机聚合物独特的性质,以满足不同领域的不同要求。此外,多孔有机聚合物易于在温和条件下合成,具有优异的热化学稳定性。同时,该类材料通常具有高度多孔的结构,有利于有机溶剂或油的扩散,从而提高吸附能力和效率。
3.当水接触角大于150
°
且滑动角小于10
°
时,便可定义为超疏水。超疏水材料的亲油性可以高效且具有选择性地吸收油和有机溶剂,实现了便捷、高效的油水分离方式。目前研究工作大部分集中在聚合物结构上引入含氟链段以达到超疏水性能,这不仅增加了成本,而且对环境不利。因此,制备一种具有低成本、选择性好、吸附效率高、满足苛刻环境要求的多孔有机聚合物迫在眉睫。


技术实现要素:

4.针对现有超疏水材料的缺点,本发明的目的在于提供一种耐酸碱超疏水涤纶织物,实现低成本、环保、高效和高选择性的新型油水分离方式。
5.本发明采用的技术方案如下:一种超疏水多孔有机聚合物,具有如(i)所示的结构式:
[0006][0007]
一种超疏水多孔有机聚合物的制备方法,包括如下步骤:
[0008]
1)合成过程:在氮气条件下,于容器中加入反应单体1,3,5-三乙炔基苯和2,7-二溴-9,9-二苯基芴,然后加入四(三苯基磷)钯和碘化亚铜作催化剂,用注射器加入无水n,n-二甲基甲酰胺和无水三乙胺,在氮气条件下,于80℃反应72h;
[0009]
2)提纯过程:反应结束后,将产物冷却至室温,分别用n,n-二甲基甲酰胺、四氢呋喃和丙酮溶剂洗涤,然后依次用四氢呋喃、二氯甲烷和甲醇索氏提取,对粗产品进行进一步纯化,最后在90℃下真空干燥10h,得到超疏水多孔有机聚合物。
[0010]
进一步的,步骤1)中,按摩尔比,1,3,5-三乙炔基苯:2,7-二溴-9,9-二苯基芴=1:1.5。
[0011]
进一步的,步骤1)中,按质量比,四(三苯基磷)钯:碘化亚铜=3:1。
[0012]
进一步的,步骤1)中,按体积比,无水n,n-二甲基甲酰胺:无水三乙胺=2.5:1。
[0013]
一种耐酸碱超疏水涤纶织物,通过浸渍的方式将上述的超疏水多孔有机聚合物负载在涤纶织物上。
[0014]
一种耐酸碱超疏水涤纶织物的制备方法,包括如下步骤:将上述的超疏水多孔有机聚合物超声分散于乙醇中得分散液,将涤纶织物放在分散液中,超声均匀、静置、干燥,得到耐酸碱超疏水涤纶织物。
[0015]
本发明提供的一种耐酸碱超疏水涤纶织物在油水混合物分离中的应用。
[0016]
本发明的有益效果是:
[0017]
1、本发明,以1,3,5-三乙炔基苯和2,7-二溴-9,9-二苯基芴作为构筑基元,四(三苯基磷)钯为催化剂,通过sonogashira-hagihara偶联反应制备多孔有机聚合物lnu-15。所用的单体廉价易得,对环境友好,易满足实际生产需求。
[0018]
2、本发明,使用简单浸渍的方式将多孔有机聚合物负载在涤纶织物上,制备方法简单,仅需通过浸渍的方式,便可以获得具有超疏水性能的涤纶织物,工艺简单,有利于快速量产。
[0019]
3、本发明制备得到的耐酸碱超疏水涤纶织物,可用于油水混合物有效分离,在强酸和强碱等苛刻条件下仍保持良好的疏水性能,可以满足不同环境的需求。
[0020]
4、本发明制备得到的耐酸碱超疏水涤纶织物,具有选择性好、分离效率高、成本低、工艺简单、对环境友好等优点,在石油化工、吸附泄漏原油、污水处理等油水分离领域具有良好的应用前景。
附图说明
[0021]
图1为本发明制备的超疏水多孔有机聚合物lnu-15的红外谱图。
[0022]
图2为本发明制备的超疏水多孔有机聚合物lnu-15的扫描电镜图。
[0023]
图3为本发明制备的超疏水多孔有机聚合物lnu-15的透射电镜图。
[0024]
图4为本发明制备的超疏水多孔有机聚合物lnu-15的粉末x-射线衍射图。
[0025]
图5为本发明制备的超疏水多孔有机聚合物lnu-15的热重图。
[0026]
图6为本发明制备的超疏水多孔有机聚合物lnu-15的接触角。
[0027]
图7为水和氯仿的分层溶液(a)和本发明制备的超疏水多孔有机聚合物lnu-15分散在水和氯仿中(b)的图片。
[0028]
图8为将水分别滴在玻璃板(a),用双面胶带处理过的玻璃板(b)和用双面胶带负
载lnu-15的玻璃板(c)的图片。
[0029]
图9为未经处理的涤纶织物(a)和本发明制备的负载lnu-15的耐酸碱超疏水涤纶织物(b)分别滴入水和氯仿后的图片。
[0030]
图10为本发明制备的负载lnu-15的耐酸碱超疏水涤纶织物接触水、盐酸、氢氧化钠和氯化钠溶液的图片。
[0031]
图11为本发明制备的负载lnu-15的耐酸碱超疏水涤纶织物在水中选择性吸收氯仿的图片。
[0032]
图12为耐酸碱超疏水涤纶织物分离氯仿和水的混合溶液的图片。
具体实施方式
[0033]
下面通过具体实施方式对本发明作进一步的阐述。
[0034]
实施例1一种超疏水多孔有机聚合物lnu-15
[0035]
超疏水多孔有机聚合物的合成路线如下:
[0036][0037]
(一)制备方法如下
[0038]
1.lnu-15的合成
[0039]
在氮气条件下,将200mg(1.3317mmol)1,3,5-三乙炔基苯、951mg(1.9976mmol)2,7-二溴-9,9-二苯基芴、30mg四(三苯基磷)钯和10mg碘化亚铜加入到50ml三颈瓶中,然后用注射器加入20ml无水n,n-二甲基甲酰胺和8ml无水三乙胺,在氮气条件下,加热到80℃反应72h。
[0040]
2.lnu-15的纯化
[0041]
反应结束后,将产物冷却至室温,分别用n,n-二甲基甲酰胺、四氢呋喃和丙酮溶剂多次洗涤。然后依次用四氢呋喃、二氯甲烷和甲醇索氏提取对粗产品进行进一步纯化。最后在90℃下真空干燥10h,得到棕色粉末,即为超疏水多孔有机聚合物,命名为lnu-15。
[0042]
(二)检测
[0043]
用红外光谱对超疏水多孔有机聚合物lnu-15的化学键和官能团进行表征,结果如图1所示,曲线a为1,3,5-三乙炔基苯,曲线b为2,7-二溴-9,9-二苯基芴,曲线c为合成的聚合物lnu-15。从图1中可以看到,反应单体在495cm-1
左右的特征峰属于c-br的伸缩振动,而聚合物lnu-15中没有出现该吸收峰,也没有在3300cm-1
处出现单体的c-h吸收峰。同时,聚合物lnu-15在2200cm-1
处可以观察到-c≡c-的吸收峰,证明了sonogashira-hagihara偶联反应的成功。
[0044]
为了研究聚合物lnu-15的表面形貌和内部结构,用扫描电镜和透射电镜对其进行形貌表征。图2为聚合物lnu-15的扫描电镜图,从扫描电镜图中可以观察到球形小颗粒堆积的形貌。图3为聚合物lnu-15的透射电镜图,从透射电镜图证明了聚合物lnu-15具有蠕虫状的孔道结构。图4为聚合物lnu-15的粉末x-射线衍射图,通过粉末x-射线衍射测试,对聚合物lnu-15骨架进行了表征,谱图显示出一个宽峰,而没有观察到明显的xrd衍射峰,证明了聚合物lnu-15是无定形结构。
[0045]
图5为本发明合成的聚合物lnu-15在氮气氛围下测试的热重谱图。从图5中可以看到,聚合物lnu-15在350℃开始坍塌,到750℃大约降解损失20%,说明聚合物lnu-15具有非常好的热稳定性。
[0046]
为了表征聚合物lnu-15的疏水性能,对聚合物lnu-15进行了接触角测试。如图6所示,测量得到的接触角为152.1
°
,超疏水由大于150
°
的水接触角和小于10
°
的滑动角定义,表明合成的聚合物具有优异的超疏水性能。
[0047]
图7为水和氯仿的分层溶液(a)和本发明制备的超疏水多孔有机聚合物lnu-15分散在水和氯仿中(b)的图片。如图7所示,将制备得到的聚合物lnu-15分散在水和氯仿的混合溶液中,并提供一个未加入聚合物lnu-15的混合溶液作空白对照。静置几分钟后,发现聚合物lnu-15均匀的分散在氯仿当中,并未在水层中出现,证明聚合物lnu-15具有良好的亲油疏水性能,这意味着可以将聚合物lnu-15应用于吸附水体中有机污染物领域。
[0048]
图8为将水分别滴在玻璃板(a),用双面胶带处理过的玻璃板(b)和用双面胶带负载lnu-15的玻璃板(c)的图片。如图8所示,将水滴滴在未经处理的玻璃板(a)和贴有双面胶带的玻璃板(b)上时,水滴直接扩散开来。与负载聚合物lnu-15的玻璃板(c)形成鲜明的对比,可以观察到负载聚合物lnu-15的玻璃板上的水滴几乎是正球形的。
[0049]
实施例2耐酸碱超疏水涤纶织物(一)制备方法如下:
[0050]
1、涤纶织物预处理:裁取若干3
×
3cm、6
×
6cm的涤纶织物,将涤纶织物置于烧杯中,分别在40ml水、乙醇和丙酮中超声浸泡2h,取出,60~70℃烘干备用。
[0051]
2、取50mg实施例1制备的聚合物lnu-15分散于40ml的乙醇中,得分散液。将预处理后的涤纶织物放在分散液中超声均匀、静置、干燥,得到产品耐酸碱超疏水涤纶织物。
[0052]
(二)基本表征
[0053]
图9为未经处理的涤纶织物(a)和本发明制备的负载聚合物lnu-15的耐酸碱超疏水涤纶织物(b)分别滴入水和氯仿后的图片。如图9所示,当水和氯仿滴在未经处理的涤纶织物(a)上时,水和氯仿都可以渗入涤纶织物中,而滴在负载lnu-15的超疏水涤纶织物(b)上时,水可以在涤纶织物表面保持球形,而氯仿渗入,说明负载聚合物lnu-15的涤纶织物具有优异的疏水亲油性。
[0054]
图10为本发明制备的负载lnu-15的耐酸碱超疏水涤纶织物接触水、盐酸、氢氧化钠和氯化钠溶液的图片。如图10所示,将水、盐酸、氢氧化钠溶液和氯化钠溶液滴在耐酸碱超疏水涤纶织物上,可以清楚看到水、盐酸、氢氧化钠溶液和氯化钠溶液始终保持饱满的球形。以上结果表明,本发明制备的耐酸碱超疏水涤纶织物在强酸和强碱等恶劣条件下仍保持优异的疏水性,表明该耐酸碱超疏水涤纶织物可以在实际复杂苛刻的环境下发挥出良好的油水分离性能。
[0055]
图11为本发明制备的负载聚合物lnu-15的耐酸碱超疏水涤纶织物在水中选择性
吸收氯仿的图片。如图11所示,当将氯仿滴入水中时,就会在水面上扩散。负载聚合物lnu-15的耐酸碱超疏水涤纶织物在水面上与氯仿接触,油层在几秒钟内就能被完全吸收,多孔材料聚合物lnu-15与涤纶织物协同作用展现出较快的吸附动力学。
[0056]
图12为耐酸碱超疏水涤纶织物分离氯仿和水的混合溶液的图片。如图12所示,搭建了一个简易的过滤分离装置,将负载聚合物lnu-15的涤纶织物固定在玻璃漏斗和锥形瓶之间。将含有30ml氯仿和30ml水的混合溶液倒入玻璃漏斗时,在重力作用下,氯仿迅速通过涤纶织物流入锥形瓶。同时,水被排斥并保留在涤纶织物的上方。油水分离过程主要基于涤纶织物上的超疏水和亲油界面。改性后,空气被截留,气-固复合界面阻止了水的润湿和扩散,油则可以穿透表面。以上结果证明了本发明制备的耐酸碱超疏水涤纶织物在石油化工、吸附泄漏原油、污水处理等油水分离领域具有很好的应用前景。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献