一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

熔模粉末的制作方法

2021-12-18 01:44:00 来源:中国专利 TAG:
熔模粉末
1.本发明涉及在块状模具精密铸造工艺中用于生产模具的粉末。
2.在块状模具铸造过程中,模型是由低熔点有机材料,例如蜡或塑料,制成最终所需形状。然后将模型放置在容器中,容器通常是圆柱形钢容器,通常称为烧瓶。粉末,有时也称为熔模粉末,与水混合形成浆料,将浆料引入容器中,从而填充模型周围的空间。一旦浆料凝固,通过使用蒸汽熔化或燃烧或放入熔炉中来移除模型。这在与模型相同形状的模具材料中留下空腔。然后进一步加热容器以烧掉任何碳残留物并使模具达到正确的铸造温度。通过将液态金属倒入模具中来铸造金属。这可以例如在重力或离心力的影响下完成。一旦金属凝固,则可以破坏模具并清洁金属。
3.由于可以以相对较低的成本实现高尺寸精度和表面细节的准确再现,许多类型的金属产品都是使用块状模具铸造工艺制造的。通过熔模铸造制造的产品示例包括珠宝、雕塑、牙科产品和用于工业应用的大型铸件。可以熔模铸造的金属包括金、银、铂族金属、铝合金、黄铜和青铜合金。玻璃和其他陶瓷也可以使用熔模铸造工艺铸造。
4.良好的熔模粉末应为铸件提供无裂纹或飞边的良好表面光洁度。
5.如果烧瓶在炉中加热时粉末的膨胀与装有固化粉末和蜡树的金属烧瓶的膨胀不匹配(例如,如果粉末的膨胀小于烧瓶),由于蜡在熔化并从烧瓶中排出之前膨胀,则蜡树和蜡模的膨胀会使耐火模具破裂。蜡在熔化前可膨胀高达15%。模具的这种破裂称为溢蜡,因为当模具在真空压力或离心力作用下填充金属时,裂缝会打开,铸件表面会出现金属溢料。
6.如果固化的粉末没有足够的孔隙,那么在烧尽循环期间,剩余的水就很难逸出,这会导致模具被推入蜡模的地方的铸件表面剥落。
7.固化的熔模粉末必须能够承受金属进入模具的力而不会破裂,并且在金属固化之前允许金属溢出。
8.熔模粉末通常由耐火成分,通常是石英、方石英或两者的混合物,和粘合剂组成。通常,粘合剂是石膏(石膏粘合熔模(gypsum

bonded

investments)或gbi),或磷酸铵镁(磷酸盐粘合熔模(phosphate

bonded

investments)或pbi)(在较高温度下铸造)。传统上,gbi熔模粉末由大约25%灰泥、30%

40%石英、40%方石英和1%添加剂组成。在大多数应用中,这些成分可能被研磨成非常细的粉末,从而使最终铸件具有出色的表面光洁度。
9.遗憾的是,石英和方石英是二氧化硅多晶型物,由游离二氧化硅组成,游离二氧化硅需要小心处理和安全措施,特别是当细颗粒存在时。游离二氧化硅已被证明是导致呼吸系统疾病的原因,例如矽肺病和其它更严重的肺部疾病。本发明的一个目的是提供一种改进的熔模粉末,其包含低含量的二氧化硅,从而最小化或避免围绕常规熔模粉末的安全问题。
10.根据本发明,提供了一种熔模粉末,包含磷酸三钙并且在呼吸部分中含有小于3%、优选小于1%,并且优选小于0.1%的游离二氧化硅。在一个优选的实施例中,熔模粉末还包括灰泥。优选地,磷酸三钙是合成的磷酸三钙。磷酸三钙的分子式为ca3(po4)2。最优选地,磷酸三钙是无水的,例如无水ca3(po4)2。优选地,灰泥是干燥的β灰泥。下文更详细地描述了干燥的灰泥。在进一步优选的实施例中,熔模粉末另外包含氧化镁。氧化镁优选为重烧
镁砂。镁砂是一种分子式为mgco3的矿物。
11.本发明提供一种比常规粉末更安全的熔模粉末。熔模粉末可以完全或基本上不含游离二氧化硅,但可以具有大于0.4%的凝固膨胀和在750℃下0.7%或更高例如1%或优选2%或更高的整体膨胀。本发明进而可以提供一种熔模粉末,其具有足够高的凝固和热膨胀以防止铸造期间模具开裂。
12.根据本发明的另一方面,提供了一种通过以下由石膏基熔模粉末制造熔模铸造模具的方法:将石膏粘合熔模粉末与水混合形成熔模铸造浆料,将浆料倒入低熔点材料模型周围的不锈钢烧瓶,允许浆料凝固以限定模具,并加热模具以烧尽模型,其中不锈钢烧瓶由400系列马氏体不锈钢,优选410不锈钢组成。可以通过将熔融金属浇铸到模具中并使金属凝固来形成金属铸件。石膏基熔模粉末可以是传统的石膏/石英/方石英粉末或如上所述的熔模粉末。
13.根据本发明的另一方面,提供了一种制造熔模铸造浆料的方法,包括将上述熔模粉末与水混合。该方法可以提供一种熔模铸造浆料,其相比常规二氧化硅基熔模粉末所需的水,不需要添加更多的水来使其流动。由于不存在小粒径的游离二氧化硅,该方法比传统方法更安全。此外,该方法提供一种熔模铸造浆料,其具有足够高的凝固和热膨胀以防止铸造期间模具开裂。
14.生产的铸件应优选满足的几个标准在很大程度上取决于所使用的熔模粉末。为生产精确的模具,重要的是熔模粉末当与一定量的水混合产生了足够流动的浆料以填充模型周围的所有间隙。模具应完全被熔融金属充满。模型应准确再现。铸造金属的表面应准确再现模具的细节。铸造产品的尺寸和重量应一致且无缺陷。通常铸造缺陷可能包括飞边或翅片,这可能是由于将过多的水与熔模粉末混合所致。过少的水可能会产生粘度过高的熔模浆料,导致在铸件表面形成气泡。如果填充材料从悬浮液中沉淀出来或使用了过多的水,也会在铸件上出现水痕。
15.如果模具材料太弱,则模具可能会在加热或铸造过程中破裂并导致铸件不合格。在不太严重的情况下,较弱的模具材料会导致铸件出现飞边或翅片,然后铸件将需要额外的精加工工作。
16.目前,由于石英和方石英与灰泥结合,它们可以赋予模具高强度,因此石英和方石英用于熔模粉末。这是在凝固和加热循环过程中通过模具材料膨胀而产生的压缩力的结果。在凝固过程中,灰泥会吸水并膨胀。这种所谓的凝固膨胀可确保模具混合物抵靠容器膨胀,并因此通过产生的压缩力赋予模具强度。尽管精确的量对灰泥/石英/方石英的比例非常敏感,但包含石英和方石英意味着凝固膨胀可高达1%。在加热过程中,灰泥变得无水并收缩。同时金属容器膨胀。这种灰泥收缩和容器膨胀应通过熔模粉末的剩余成分的膨胀来补偿,否则模具的强度将降低,并且有损坏模具导致最终金属产品飞边的风险。在加热过程中,石英和方石英在约250℃和570℃经历相变。在每种情况下,矿物从α相转变为β相,这伴随着体积的巨大正变化。尽管在较高温度下灰泥的体积可能会减少,但在模具经历的整个温度范围内,这种膨胀会导致产生的压缩力(因此模具的强度)仍然很高。这就是迄今为止一直使用石英和方石英的原因。一些矿物经历相变并因此膨胀,但温度比石英和方石英高得多。由于熔模中使用的灰泥粘合剂会在800℃以上迅速分解,因此这些矿物通过相变的膨胀不能用来抵消灰泥收缩。
17.由于以上所述,为替代熔模粉末建立的目标标准是它应该基本上不含游离二氧化硅,但具有优选大于0.2%、优选大于0.5%、例如0.8%,和更优选1%或更多的凝固膨胀,并且在750℃下的整体膨胀优选地大于0.7%并且更优选地大于1%,例如2%或更多。熔模粉末应优选不需要添加比传统二氧化硅基的熔模所需的更多的水来使其流动。通常添加的水量低于50%w/w;例如低于40%w/w;例如低于30%w/w;例如低于20%w/w。最重要的是,它应该能够定期生产令人满意的铸件。
18.总之,需要从良好的熔模铸造粉末达到以下:
19.1)良好的表面光洁度;
20.2)良好的孔隙率,以能够快速燃尽循环;
21.3)良好的流动性,使得可以复制蜡的精细细节;
22.4)温度从20℃升至700℃以上时膨胀良好;
23.5)快速凝固,使整个工艺周期可以最小化;
24.6)在燃尽循环期间能够承受780℃。
25.经过大量研究发现,磷酸三钙可用作耐火成分,以提供能够满足上述标准的令人满意的石膏粘合熔模粉末的基础。磷酸三钙提供熔模粉末在上述各个阶段发挥作用所必需的热膨胀。
26.磷酸钙是骨骼的主要燃烧产物。磷酸钙也可以来自矿物岩石。本发明的熔模粉末中的磷酸钙为磷酸三钙。磷酸三钙天然存在于矿物岩石中,但优选合成的磷酸三钙。合成的磷酸三钙可以通过用磷酸和熟石灰处理羟基磷灰石以产生无定形磷酸三钙而形成,该无定形磷酸三钙在煅烧时形成结晶磷酸三钙。结晶磷酸三钙有三种形式;菱面体β

形式和两种高温形式,单斜α

和六方α'

。技术人员将能够选择最合适的晶型用于任何特定应用的熔模粉末中。
27.存在于熔模粉末中的磷酸三钙的量决定了粉末的特性并且可以改变以获得所需的特性。通常,熔模粉末包含按重量计约25%至约75%的磷酸三钙(例如约25%至约75%的ca3(po4)2)。优选地,熔模粉末包含按重量计大于30%至约70%的磷酸三钙。更优选地,熔模粉末包含约35%至约65%的磷酸三钙,优选合成的磷酸三钙,例如,约40%至约60%,例如约38%至约53%的磷酸三钙,例如约39%至约50%的磷酸三钙,例如约48%的磷酸三钙。任何合适的磷酸三钙来源均可用于本发明的熔模粉末。磷酸三钙(ca3(po4)2)在商业上广泛可用。磷酸三钙可以是水合物或无水材料的形式。优选地,磷酸三钙具有高热膨胀。优选地,磷酸三钙当从20℃加热至750℃时,具有大于1%、更优选地大于1.5%、例如大于2%的热膨胀。
28.存在于熔模粉末中的灰泥量影响膨胀性能。通常按重量计约10%至30%的灰泥对于磷酸三钙/灰泥基熔模粉末是可取的。优选地,灰泥是干燥的β灰泥。灰泥是通过煅烧石膏(caso4.2h2o)形成半水合物来制备。例如,在us1,370,581和us 3,898,316中描述了通过在干燥剂、潮解剂、优选无机潮解剂和特别是氯化钙存在下煅烧石膏来生产干燥石膏灰泥的工艺。所得产品称为干燥灰泥,是一种需水量减少的灰泥。干燥灰泥优选以按重量计约10%至30%,优选12%至22%,更优选13%至15%例如14%存在。
29.除了磷酸三钙,熔模粉末可以含有氧化镁。可以使用任何合适形式的氧化镁。优选地,氧化镁为重烧镁砂的形式,也称为dbm。dbm可以通过在受控高温下烧结镁砂(mgco3)形
成。氧化镁在加热下也表现出膨胀曲线。虽然氧化镁在所需的温度范围内不像磷酸三钙那样提供高水平的膨胀,但磷酸三钙可以是纤维状的,并且氧化镁作为耐火成分的存在以提供热膨胀在仍能实现足够的膨胀的同时,相比熔模可以提高熔模粉末的流动能力。如果使用的氧化镁优选以约10%至65%、优选约15%至约50%、更优选22%至45%、更优选23%至28%存在。优选使用的氧化镁是dbo。优选地,dbo具有低含量的任何二氧化硅污染物,例如低于10wt%,更优选低于5wt%,例如低于2wt%,优选低于1wt%。优选地,氧化镁具有约50至约400,例如,约60至约325的筛目尺寸。
30.蛭石、绿泥石、云母和滑石具有低含量的二氧化硅(<1.5wt%)。它们可以少量使用,以提高磷酸三钙/灰泥基熔模粉末的膨胀性能。优选地,此类矿物以以下熔模粉末重量存在:小于25%,更优选地5%至20%,并且最优选地8%至15%,例如约12%。优选的矿物包括蛭石、海绵碱蓝晶石(nepthaline cyanite)、蓝晶石、绿泥石、长石、云母和滑石。为此目的,特别优选云母。
31.尽管使用仅由灰泥和磷酸三钙,可选具有镁砂和云母组成的熔模粉末可以实现用于某些目的的令人满意的模具,但是熔模粉末的性质可以根据需要通过使用额外的添加剂组分来改变。
32.使用的添加剂可包括促进剂、缓凝剂、润湿剂、消泡剂和悬浮剂。在这些情况下,由于所用的粘合剂仍然是灰泥,因此用于制造传统二氧化硅基熔模粉末的化学品是有效的。加速剂和缓凝剂是控制熔模粉末凝固时间所必需的,润湿剂、消泡剂和悬浮剂用于改善铸件的整体表面光洁度。添加剂的量通常小于总熔模粉末重量的1%。
33.在优选的实施例中,存在的添加剂按重量计包含:
34.促凝剂

0%至3%,优选0.05%至0.5%;
35.当粉末与水混合时有助于浆料流动的增塑剂

0%至3%,优选0.02%至1%;缓凝剂

0%至3%,优选0%至1.5%
36.消泡剂

0%至0.5%,优选0.05%至0.3%
37.熔模粉末优选具有细粒度以产生良好的铸件表面光洁度。可以选择熔模粉末的粒度以产生所需的铸件项的表面特性。因此,优选地,熔模粉末具有至多约2000μm的粒度,更优选以形成约100nm至约1000μm,例如约1μm至约500μm,例如约10μm至约100μm。
38.因此,本发明优选的熔模粉末包含:
39.‑
按重量计约25%至约75%的磷酸三钙;
40.‑
按重量计约10%至约30%的灰泥;和
41.‑
按重量计约10%至约65%的氧化镁;
42.磷酸三钙、灰泥和氧化镁的总量不超过100wt%。
43.因此,本发明的进一步优选的熔模粉末包含:
44.‑
按重量计大于约30%至约70%的磷酸三钙;
45.‑
按重量计约10%至约30%的灰泥;和
46.‑
按重量计约10%至约60%的氧化镁;
47.磷酸三钙、灰泥和氧化镁的总量不超过100wt%。
48.本发明的更进一步优选的熔模粉末包含:
49.10至30%的灰泥
50.大于30至70%的磷酸三钙
51.10至60%的氧化镁
52.0至25%的一种或多种低二氧化硅矿物
53.0到10%的添加剂。
54.发明人已经在铸造材料的生产中测试了这种熔模粉末,并且通常产生具有良好表面光洁度、优良铸造质量和良好清洁/淬火性能的铸件。
55.本发明更优选的熔模粉末包含:
56.‑
按重量计约35%至约65%的磷酸三钙;磷酸三钙当从20℃加热到750℃时优选具有大于1%的热膨胀;
57.‑
按重量计约12%至约22%的干燥灰泥;和
58.‑
按重量计约15%至约50%的氧化镁,优选重烧镁砂;
59.‑
以及任选地含有按重量计1%至25%的选自蛭石、绿泥石、云母和滑石的矿物;
60.磷酸三钙、灰泥、氧化镁和(如果存在)选自蛭石、绿泥石、云母和滑石的矿物的总量不超过100wt%。
61.发明人已经在铸造材料的生产中测试了这种熔模粉末,并且通常产生具有非常好的表面光洁度、优异的铸件质量和非常好的清洁/淬火性能的铸件。
62.本发明仍更优选的熔模粉末包含:
63.‑
按重量计约38%至约53%的磷酸三钙;磷酸三钙当从20℃加热到750℃时优选具有大于1.5%的热膨胀;
64.‑
按重量计约13%至约15%的干燥灰泥,优选干燥β灰泥;
65.‑
按重量计约22%至约45%的氧化镁,优选重烧镁砂,优选具有约50至约400的筛目尺寸;和
66.‑
按重量计5%至20%的选自蛭石、绿泥石、云母和滑石的矿物,优选云母;
67.磷酸三钙、灰泥、氧化镁和选自蛭石、绿泥石、云母和滑石的矿物的总量不超过100wt%。
68.发明人已经在铸造材料的生产中测试了这种熔模粉末,并且通常产生具有优异表面光洁度、优异铸造质量和优异清洁/淬火性能的铸件。
69.本文所述的任何优选的熔模粉末剂还可包含一种或多种如上所述的促进剂、缓凝剂、润湿剂、消泡剂和/或悬浮剂;熔模粉末中各成分的总量不超过100wt%。
70.通常,用于使用传统石膏

石英

方石英熔模粉末的块状模具铸造工艺中的不锈钢烧瓶由304或316不锈钢制成。对304或316不锈钢的引用是对常用的美国钢铁协会aisi命名法的引用。300系列不锈钢是奥氏体不锈钢,其是铬镍合金,它们是最广泛应用的不锈钢,特别是最常见的奥氏体不锈钢,304不锈钢,也被称为18/8(基于其18%铬和8%镍的组合物);以及第二种最常见的奥氏体不锈钢,316不锈钢,其包括2%钼。
71.为了与熔模粉末和本发明的方法一起使用,优选由400系列马氏体不锈钢,例如410不锈钢,形成不锈钢烧瓶。如前所述,金属烧瓶在表面受热时将膨胀,并且尽管石膏成分在它变的无水时收缩,熔模粉末的膨胀必须至少与金属烧瓶的膨胀相匹配,以保持模具的抗压强度。
72.304、316和410不锈钢具有不同的线膨胀系数如下:
73.304不锈钢的系数为0.0000173
74.316不锈钢的系数为0.0000160
75.410不锈钢的系数为0.0000099
76.对于公称直径为100毫米的圆柱形烧瓶,加热至750℃,其直径为:
77.304不锈钢100.041
78.316不锈钢100.038
79.410不锈钢100.023
80.对于给定的熔模粉末,烧瓶的较低膨胀将导致模具的抗压强度增加。
81.另一方面,304、316和410不锈钢具有不同的耐热特性,耐热性与碳的分解和释放(腐蚀和氧化)有关,这会导致变形和交叉污染。通常接受的最高连续工作温度是:
82.304不锈钢925℃;
83.316不锈钢925℃;
84.410不锈钢705℃。
85.就不锈钢的耐热性能和在提高的温度(通常在750℃左右)下烧尽模具的要求而言,似乎410不锈钢不如304或316不锈钢合适。然而,300系列(诸如304和316)中的钢的热循环导致高温垢的形成。所述垢具有与基底金属不同的膨胀系数,这导致加速开裂和变形。使用400系列马氏体钢,如410,未观察到这种伴随加速开裂和变形的高温垢。因此,尽管300系列的最高普遍接受的间歇工作温度低于连续工作的温度似乎不合逻辑,但情况确实如此。普遍接受的间歇工作温度是:
86.304不锈钢870℃;
87.316不锈钢870℃;
88.410不锈钢815℃。
89.因此,410不锈钢尽管具有比304或316不锈钢更低的抗氧化耐热特性,但它在大约750℃的烧尽阶段仍能够在需要间歇温度的热循环内执行。
90.使用传统的石膏

石英

方石英熔模粉末,从α到β的相变形成伴随着方石英在250℃左右和石英在570℃的体积正变化,提供了熔模粉末的充分膨胀,以补偿石膏成分的收缩和传统304或316不锈钢烧瓶的热膨胀。对于本发明的熔模粉末,熔模粉末的热膨胀可以接近常规熔模粉末的热膨胀,但与使用304或316不锈钢烧瓶相比,使用410不锈钢烧瓶由于烧瓶的较低膨胀可以提高模具的抗压强度,从而提高了模具的质量。
91.本发明的烧瓶的尺寸没有特别限制,可以使用任何常规的烧瓶尺寸。在一些实施例中,烧瓶是8英寸
×
4英寸烧瓶或6英寸
×
4英寸烧瓶。
92.实施例1
93.以下测试是在316或410不锈钢烧瓶中使用包含磷酸三钙、干燥β灰泥和重烧镁砂的熔模粉末进行的。
94.称出9.8kg粉末并称量出3.724l水。这是38/100的混合比。
95.准备了4个烧瓶,两个是9
×
4英寸的316烧瓶,两个是7
×
4英寸的410烧瓶。
96.将粉末加入水中并在无真空下混合30s,然后刮下叶片并将浆料在真空下混合4分钟。
97.在总共2.25分钟内倒入四个烧瓶,然后再抽真空一分钟。
98.在18℃的浆料温度下,释放真空后,在总共14.75分钟时发生脱光泽。
99.燃尽循环
100.将烧瓶放置90分钟,然后使用以下燃尽循环在熔炉中燃烧

101.以150c和小时加热至220c
102.在220c下保持4小时
103.以150c一小时加热至720c
104.在720c下保持5小时
105.冷却至铸造温度
106.铸造
107.所有铸件均采用银制成并在15分钟时淬火
108.测试1

316烧瓶
‑9×
4英寸
109.烧瓶温度700c
110.金属温度1000c
111.金属重量11盎司
112.在树的中心主要至一侧观察到少量飞边。4件受到影响。
113.测试2

410烧瓶
‑7×
4英寸
114.烧瓶温度650c
115.金属温度975c
116.金属重量9.5盎司
117.在这个铸件上没有任何缺陷。
118.测试3

316烧瓶
‑9×
4英寸
119.烧瓶温度500c
120.金属温度1000c
121.金属重量17.5盎司
122.在该316烧瓶树上,树的中心再次出现飞边
123.测试4

410烧瓶
‑7×
4英寸
124.烧瓶温度500c
125.金属温度950c
126.金属重量9.5盎司
127.该铸件看起来完美,具有良好的表面并在410烧瓶中淬火。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献