一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种具有导热电磁屏蔽性能的电子封装材料及其制备方法

2022-11-30 10:18:01 来源:中国专利 TAG:


1.本发明属于电子封装材料技术领域,尤其涉及一种具有导热电磁屏蔽电性能的电子封装材料及其制备方法。


背景技术:

2.如今,电子封装技术日益呈现出大功率和小型化的趋势,芯片的尺寸从微米下降到几个纳米,元器件工作产生的热量呈指数式增加,若这些热量得不到有效的排除,就会产生热量的集聚从而使得器件热失效,会令器件的性能下降、寿命缩短。此外,电磁波的辐射不仅对人体有害,而且对工作中的器件及邻近的设备也会产生辐射影响。随着5g信息技术的普及,器件工作频段的提升和射频器件的发展,电磁辐射不可避免的存在于各种场合中,因此兼具良好的导热和电磁屏蔽性能的电子封装材料是亟需的功能材料。
3.热固性树脂由于质量轻、成本低、耐化学腐蚀等优点被广泛的用于电子封装材料。虽然树脂分子链的结晶可以有效提升热导率,但是仍不满足散热和电磁屏蔽性能的要求。一般的解决方法是在热固性树脂中引入导热、导电性能好的填料。碳材料具有良好的电导率和热导率,是导热和电磁屏蔽复合材料的首选填料。要实现良好的导热和电磁屏蔽性能,需要填充大量的碳材料,由于π-π键等作用,碳材料在基体里的很容易团聚,使得加工困难,复合材料的力学性能下降。有研究通过结构的设计,如隔离结构、取向结构等,可以在低含量的碳材料负载下实现良好的分散(composites part a,2016,90,606

613;small 2018,1704044),但是复合材料的性能得不到进一步的提升。金属粒子具有更高的电导率和良好的热导率,但它们的熔点均高于聚合物的加工温度,在加工过程中处于固态,会使熔体粘度增加,磨损加工仪器。为了利用金属材料的高电导率,有研究在金属材料表面包覆碳材料,或者在碳材料表面包覆金属材料(carbon,2011,49,1965

1971),但是金属材料比较容易脱落,会降低导电性或氧化而失去导电性。


技术实现要素:

4.本发明的目的之一是提供一种具有导热电磁屏蔽性能的电子封装材料,该复合材料具有优异的导热和电磁屏蔽性能,在电子封装领域有很高的应用价值,解决了现有技术中金属材料比较容易脱落的问题。
5.为实现上述目的,本发明采用了以下技术方案:一种具有导热电磁屏蔽性能的电子封装材料,该电子封装材料包括均匀分散的热固性树脂颗粒和填充在热固性树脂颗粒之间的低熔点合金,所述热固性树脂颗粒的表面包覆有金属界面层,所述金属界面层为单一金属颗粒连接而成的金属层,所述低熔点合金的金属元素不同于金属界面层的金属元素,在低熔点合金中与金属界面层相连接的一面,低熔点合金的金属元素与金属界面层中的金属元素反应形成金属间化合物;所述低熔点合金的熔点低于热固性树脂颗粒的熔点。
6.作为具有导热电磁屏蔽性能的电子封装材料进一步的改进:
7.优选的,该电子封装材料中,低熔点合金的含量为3wt%~50wt%,金属界面层的
含量为0.5wt%~15wt%,金属间化合物含量为2wt%~12wt%,总组份含量百分数之和为100wt%.
8.优选的,所述热固性树脂颗粒为球形结构,粒径为800nm~800μm。
9.优选的,所述热固性树脂颗粒的材质为环氧树脂、聚酰亚胺树脂中的一种。
10.优选的,所述低熔点合金为锡、铋、铅、铟、镓、锌、镉、汞、银、铜中的两种及以上元素的合金。
11.优选的,所述低熔点合金的熔点为105℃~232℃。
12.优选的,所述金属界面层为银界面层、铜界面层、镁界面层、镍界面层、金界面层、铝界面层中的一种,组成金属界面层的金属颗粒大小为20nm~500nm。
13.本发明的目的之二是提供一种上述具有导热电磁屏蔽性能的电子封装材料的制备方法,包括如下步骤:
14.s1、通过化学镀、电镀或喷涂的方式在热固性树脂颗粒的表面包覆一层金属界面层,所述界面金属层的厚度为20nm~1μm,热固性树脂颗粒与金属界面层的质量分数比(1.5~188):1,得到改性热固性树脂颗粒;
15.s2、将低熔点合金与改性热固性树脂颗粒混合均匀,混合物中低熔点合金的质量比为3wt%~50wt%,将混合物置于模型中,在高于低熔点合金且低于改性热固性树脂颗粒熔点的温度下热压即制得具有导热电磁屏蔽性能的电子封装材料。
16.作为具有导热电磁屏蔽性能的电子封装材料的制备方法进一步改进:
17.优选的,所述热固性树脂颗粒通过沉淀聚合、水蒸气诱导相分离法、机械破碎、乳液聚合、溶液聚合中任意一种的方法制得。
18.优选的,所述步骤s2中热压成型的时间为10min~50min,热压压力为5mpa~30mpa。
19.本发明的原理为:
20.低熔点合金熔点比热固性树脂低,在热压加工过程中处于液态,可以降低复合体系的粘度、提高加工性能、降低设备磨损。为了增加低熔点合金与热固性树脂的结合,本发明通过获得规则结构的热固性树脂颗粒,且在聚合物颗粒表面引入金属界面层,在低熔点合金熔点以上和热固性树脂熔点以下的温度热压加工得到隔离结构的复合材料,复合材料具备良好的导热和电磁屏蔽性能。低熔点合金可以粘结热固性树脂颗粒,解决热固性树脂无法热压加工的问题。
21.球形热固性树脂颗粒在热压中不变形,是很好的隔离结构的基体模板。热固性树脂表面的金属界面层使得热固性树脂颗粒能被低熔点合金充分润湿。热压温度在低熔点合金的熔点以上,低熔点合金融化可以在热固性树脂颗粒体系里流动充分分散,合金成分中的金属元素与金属界面层的金属元素生成金属间化合物,从而使流动的低熔点合金定向包覆在热固性树脂颗粒之间,形成隔离结构复合材料。在导热导电金属界面层和低熔点合金隔离结构的协同作用下,复合材料同时具备良好的导热与电磁屏蔽性能。
22.本发明相比现有技术的有益效果在于:
23.(1)本发明所述的隔离结构复合材料同时拥有优异的导热和电磁屏蔽性能。
24.(2)本发明所述的复合材料中热固性树脂颗粒的表面金属界面层处理技术适用性好,效果显著。
25.(3)本发明所述的低熔点合金,在熔点以上具有流动性,可以充分润湿热固性树脂颗粒,与金属界面层通过金属间化合物包覆热固性树脂颗粒,在较低的含量下即可同步实现优异的导热和电磁屏蔽性能。
26.(4)本发明所述的低熔点合金可以解决热固性树脂无法二次加工的问题。
27.(5)本发明的所述的制备复合材料方法,适用性广,简单易行,适合大规模生产加工。
附图说明
28.图1是本发明实施例1制得的复合材料的结构图;
29.图2是本发明实施例1复合材料的扫描电镜图片;
30.图3是本发明实施例1复合材料的x射线衍射图。
具体实施方式
31.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
32.实施例1
33.本实施例提供一种具有导热电磁屏蔽性能的低熔点合金/聚酰亚胺复合材料的制备方法,包括以下几个步骤:
34.s1、称取5g的聚酰亚胺树脂于50ml的n,n-二甲基甲酰胺中,70℃水浴锅中搅拌10h,混合溶液转移到90%湿度,30℃的温度恒温恒湿箱中24h,收集产物,用去离子水洗涤5次,烘干。将100mg盐酸多巴胺和1g聚酰亚胺颗粒加入ph为8.5的250ml(tri溶液:无水乙醇=3:1)混合溶液中,通氧反应48h,获得涂覆多巴胺的树脂微球,将该涂覆多巴胺的树脂微球和0.5g葡萄糖加入100ml银氨溶液中反应6h,获得表面包覆有银界面层的聚酰亚胺颗粒即改性聚酰亚胺颗粒。
35.s2、复合材料的制备:称取1.2gsn-58bi与2g步骤2所得改性聚酰亚胺颗粒混合均匀,将混合物置于模型中,在220℃和10mpa热压15min,得到低熔点合金/聚酰亚胺复合材料。
36.图1为隔离结构复合材料示意图,复合材料的断面扫描图如图2所示,改性聚酰亚胺颗粒保持规则球形,合金颗粒包覆在改性聚酰亚胺颗粒表面,形成图1所示的复合材料。通过x射线衍射图可知,位于34.8
°
处的(201)晶面归属于低熔点合金与银界面层生成了ag3sn金属间化合物,金属间化合物使得低熔点合金定向包覆在聚酰亚胺颗粒表面,形成隔离结构复合材料。
37.实施例2
38.本实施例提供一种具有导热电磁屏蔽性能的低熔点合金/环氧树脂复合材料的制备方法,包括以下几个步骤:
39.s1、在200ml聚丙二醇溶剂中,通过磁力搅拌使得0.6g三缩水甘油基氨基苯酚与二乙基甲苯二胺混合均匀(摩尔比为3:4),后置于烘箱中于140℃条件下固化18h,获得的沉淀物用热乙醇洗涤,于真空干燥箱80℃烘干。将100mg盐酸多巴胺和1g环氧树脂加入ph为8.5
的250ml(tri溶液:无水乙醇=3:1)混合溶液中,通氧反应48h,获得涂覆多巴胺的树脂微球,将该微球和0.5g葡萄糖加入100ml银氨溶液中反应6h,获得表面包覆有银界面层的环氧树脂颗粒即改性环氧树脂颗粒。
40.s2、称取1.2gsn-58bi与2g的步骤2所得改性环氧树脂颗粒混合均匀,将混合物置于模型中,在180℃和10mpa热压15min,得到低熔点合金/环氧树脂复合材料。
41.实施例3
42.本实施例提供一种具有导热电磁屏蔽性能的低熔点合金/环氧树脂复合材料的制备方法,包括以下几个步骤:
43.s1、称取500g的环氧树脂于超低温冷冻粉碎机中,通液氮后以5000r/min的速度破碎环氧树脂,选择300目与200目分子筛过滤的环氧树脂颗粒。将筛选的粒径为800nm~800μm的环氧树脂颗粒通过磁控溅射仪在真空度为2pa的条件下处理20min,获得表面包覆有银界面层的环氧树脂颗粒即改性环氧树脂颗粒。
44.s2、称取1.8g sn-58bi与2g步骤2所得改性环氧树脂颗粒混合均匀,将混合物置于模型中,在180℃和10mpa热压15min,得到低熔点合金/环氧树脂复合材料。
45.表1实施例1、2和3的热导率和屏蔽效能的对比
46.样品热导率(w/mk)屏蔽效能(db@10ghz)实施例10.8136.42实施例21.9245.39实施例33.0852.47
47.由表1可知,无论是引入银界面层的聚酰亚胺树脂还是环氧树脂,与低熔点合金复合获得的隔离结构复合材料均同时具有良好的热导率和电磁屏蔽性能。由表1的测试结果可知,对比实施例1和实施例2,由于热固性树脂颗粒的制备方法不同,获得树脂颗粒粒径是有差别的,因此在相同低熔点合金含量下,热导率性能也不一样。树脂颗粒越大越有利于减小基体和填料的界面从而减少声子散射,越有利于提升复合材料的导热性能。因此,在应用中,我们尽量选择树脂粒径更大的颗粒作为基体。对比实施例2和实施例3可知,复合材料的热导率和电磁屏蔽性能随低熔点合金的含量增加而增加,可通过调节填料含量来调节复合材料的性能。
48.本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献