一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

超轻质石墨烯-HBN纳米颗粒气凝胶的制作方法

2022-11-30 10:13:49 来源:中国专利 TAG:

超轻质石墨烯-hbn纳米颗粒气凝胶
1.相关申请的交叉引用
2.本技术要求2020年1月21日提交的美国专利申请第62/963,815号和2020年6月16日提交的美国专利申请第63/039,792号的权益,这两个申请据此通过引用以其整体并入。


背景技术:

3.大多数聚合物、塑料、纺织品和木材由于其有机性质而本质上是易燃的,这使得它们容易被外部热源或火源点燃。在燃烧时,它们可以在燃烧期间释放大量的热量、烟雾和有毒气体。因此,它们对人类的安全和财产构成了巨大的威胁。因此,工业上已经开发了各种添加剂,如卤素基材料和磷基材料,将其并入聚合物中以用于解决这些问题。然而,由于在燃烧期间对环境的毒性后果和健康问题,这些常规的阻燃剂正逐步被淘汰。此外,一些环氧树脂和无机盐(例如氧化铝和硼酸盐)可以提供优异的阻燃性能,但它们具有非常差的洗涤耐久性。气凝胶可能提供了替代的前进道路。
4.大多数气凝胶由陶瓷材料(如二氧化硅、氧化铝和碳化物)制成,因此它们非常致密、易碎并且在极端环境应用中不灵活。二维(2d)层状纳米结构,如石墨烯、氧化石墨烯(go)和h-bn在包括极端环境应用在内的未来技术中具有广阔的潜力,这是因为它们可以承受高温、恶劣的化学环境和腐蚀。尽管自从具有聚合物复合材料的2d层状材料基气凝胶被研究已经过去了十多年,但如差的负载传递、良好的界面工程和分散性的基本挑战仍然是这些材料的商业化需要克服的一大瓶颈。
5.因此,可以用于高温或恶劣的化学环境的气凝胶和用于形成气凝胶的技术是期望的。


技术实现要素:

6.本文公开了来自二维层状材料和聚合物胶体的组装体的超轻质、环境友好的耐热和防火气凝胶和复合材料,以及用于合成基于2d纳米结构的超轻质的耐火气凝胶及其复合材料的方法。
7.用于产生气凝胶的方法通常包含至少三个步骤:(i)混合固体氨硼烷和载体结构,其中所述载体结构是(a)二维纳米结构材料或(b)烃聚合物胶体;(ii)允许所述混合物自组装以形成多个杂化颗粒;和(iii)在第一温度下退火所述多个杂化颗粒以形成所述气凝胶。
8.任选地,所述方法还可以包括基于所述气凝胶的目标密度(如不超过约11mg/cm3)来确定用于制备所述气凝胶的载体结构的量与所述氨硼烷的量的比率。
9.任选地,所述方法还可以包括通过允许至少一种化学试剂如聚二甲基硅氧烷(pdms)渗透所述气凝胶来改变所述气凝胶的至少一种性质。
10.在各种实施例中,所述二维纳米结构材料是石墨烯、过渡金属二硫属化物或mxene。在各种实施例中,所述烃聚合物是聚苯乙烯。
11.在一些实施例中,所述载体结构是球形的。在一些实施例中,所述载体结构是非球形的。
12.在各种实施例中,退火包括在介于1000与1500℃之间的第一温度下提供氮。在一些实施例中,退火还包括在介于500与700℃之间提供空气。
13.在各种实施例中,所述杂化颗粒的平均粒径小于30μm。
14.第二方面涉及一种气凝胶。所述气凝胶包含多个含有二维纳米结构材料和六方氮化硼(hbn)的胶体纳米颗粒。
15.在各种实施例中,所述二维纳米结构材料是石墨烯、过渡金属二硫属化物或mxene。在各种实施例中,气凝胶包含至少一种另外的添加剂(如pdms)。
16.在各种实施例中,二维纳米结构材料由b和n原子掺杂。
17.任选地,所述气凝胶可以被配置为用作涂层或用作结构部件。
附图说明
18.下面参照附图进一步描述本发明的实施例,其中:
19.图1是所公开的用于形成气凝胶的方法的简化说明。
20.图2是说明氧化石墨烯的百分比对所得气凝胶的密度的影响的图。
21.图3是氧化石墨烯和硼酸氨的杂化颗粒的扫描电子显微镜图像。
22.图4是hbn气凝胶的扫描电子显微镜图像。
23.图5是聚焦于石墨烯-hbn颗粒的扫描电子显微镜图像。
24.图6是说明气凝胶中的pdms对气凝胶的密度的影响的图。
具体实施方式
25.可以使用至少三步法来制造有用的气凝胶。参考图1可以最好地理解这一点。
26.方法100的第一步是固体氨硼烷111和载体结构112的混合110。
27.氨硼烷在本领域中是熟知的。氨硼烷(ab)(也被称为硼氮烷(borazane))已被研究作为高能量密度的氢源。氨硼烷的合成方法是熟知的。例如,一种工艺涉及使金属硼氢化物(例如硼氢化钠)与氨盐(例如碳酸铵)在合适的溶剂(例如醚溶剂,如四氢呋喃或二噁烷)中反应,然后过滤并置于真空下以产生固体氨硼烷。在商业上可获得高纯度的氨硼烷。
28.载体结构将属于两种类别的材料之一:(a)二维纳米结构材料或(b)烃聚合物胶体。此类载体结构可以用于控制孔的几何形状和尺寸。
29.在一些实施例中,所述载体结构是球形的。在一些实施例中,载体结构是非球形的,包括但不限于立方体、杆状和星形。
30.通常,二维化合物的形式为单层或几层厚,即厚达10个分子层。层状材料(例如无机化合物或石墨烯)的二维晶体是该材料的单个或几个层状颗粒。
31.合适的二维材料的非限制性实例包括(i)石墨烯或氧化石墨烯;(ii)过渡金属二硫属化物,包括具有式mx2的那些,其中m是钼、钨或铌,并且x是硫、硒或碲,如nbse2、mos2、ws2、wse2、mote2和(iii)很少分层的mxene(即具有少于5层的mxene),包括2-1mxene如ti2c、(ti
0.5
,nb
0.5
)2c、v2c、nb2c、mo2c、mo2n、ti2n、w
1.33
c、nb
1.33
c、mo
1.33
c、mo
1.33y0.67
c;3-2mxene如ti3c2、ti3cn、zr3c2、hf3c2;4-3mxene如ti4n3、nb4c3、ta4c3、v4c3、(mo,v)4c3;5-4mxene如mo4vc4;和双过渡金属mxene,包括2-1-2mxene,如mo2tic2、cr2tic2、mo2scc2;和2-2-3mxene如mo2ti2c3。
32.烃聚合物可以是任何合适的烃聚合物,包括聚苯乙烯、聚乙烯和/或聚丙烯。在使用烃聚合物的优选实施例中,烃聚合物是聚苯乙烯。
33.任选地,所述方法还可以包括基于气凝胶的目标密度(如不超过约50mg/cm3、不超过40mg/cm3、不超过30mg/cm3、不超过20mg/cm3或不超过11mg/cm3)来确定用于制备气凝胶的载体结构的量与氨硼烷的量的比率。如所预期的,随着用于载体结构的材料的变化,比率也必然变化。参见例如图2。在一些实施例中,所得的气凝胶的性质可以通过控制组分(例如石墨烯和氨硼烷)之间的比率来调节。
34.在各种实施例中,载体结构的平均粒径小于30μm。在一些实施例中,载体结构的平均粒径为≤30μm、≤25μm、≤20μm、≤15μm、≤10μm、≤5μm或≤1μm。用于测量粒径(即使是非球形颗粒)的方法是技术人员已知的。例如,一种方法提供具有给定颗粒的相同表面积的球体直径。
35.返回参考图1,第二步是允许120固体氨硼烷111和载体结构112混合物自组装以形成多个121杂化颗粒122。通常,如在图1中看到的,这将涉及固体氨硼烷111围绕载体结构112的每个颗粒或元件组装,因为载体结构试图将它们自身排列成某种紧凑的形式。
36.在各种实施例中,所述杂化颗粒的平均粒径小于30μm。在一些实施例中,杂化颗粒的平均粒径≤30μm、≤25μm、≤20μm、≤15μm、≤10μm、≤5μm或≤1μm。
37.应当注意,氨硼烷和载体结构应当被选择成使得在该两种组分之间存在吸引人的相互作用。例如,考虑使用氧化石墨烯和氨硼烷的系统。氧化石墨烯由于含氧基团而带负电荷,并且氨硼烷是带负电荷和带正电荷的分子。由于静电荷和其他相互作用(例如范德华力、氢键),该两种组分相互作用并形成颗粒,如在扫描电子显微镜图像中示出的(参见图3)。
38.第三步是退火130杂化颗粒以形成hbn气凝胶131。
39.退火过程可以改变通过自组装形成的孔结构。例如,氧化石墨烯是2d片,并且将其与氨硼烷混合形成球形和不规则的椭圆形结构,该结构在退火后变成球形结构。
40.退火过程通常涉及在大于900℃,并且优选地在介于1000与1500℃之间,如至少1000℃、1050℃、1100℃、1200℃、1300℃或1400℃,并且不超过1500℃、1400℃、1300℃、1200℃、1150℃或1100℃(包括所有子范围及其组合)的第一温度下的第一退火。
41.通常,第一退火过程在气体,并且优选地惰性气体如氮气的存在下进行。在一些优选的实施例中,在介于1050与1150℃之间的温度下提供氮气。
42.第一退火过程通常进行第一时间段,该第一时间段为至少六小时,优选地介于6至24小时,更优选地介于10至16小时,并且最优选地介于11至13小时。所需的时间基于使用的温度;退火过程将氨硼烷转化为hbn。如果时间/温度组合不足,则其将为无定形bn。在更高的温度下退火需要更少的时间来完成所需的转化和结晶。
43.在一个实例中,在n2气氛下,将氧化石墨烯-氨硼烷杂化组装体在1100℃(其中温度升高速率为5℃/分钟)下退火12小时,得到石墨烯-hbn气凝胶。
44.退火过程还可以包括在介于500与700℃之间,如至少500℃、550℃或600℃,并且不超过700℃、650℃或600℃(包括所有子范围及其组合)的第二温度下的第二退火。。通常,第二退火过程在气体的存在下进行。在优选的实施例中,使用空气。这种第二次退火通常用于hbn气凝胶合成,并且通常不用于形成具有二维纳米结构材料的气凝胶,如石墨烯-hbn气
凝胶纳米颗粒合成。此处的主要目的是去除任何残留的烃聚合物胶体,例如聚苯乙烯纳米颗粒,从而获得多孔hbn。气凝胶结构。
45.第二退火过程通常进行第二时间段,该第二时间段介于3至12小时,优选地介于5至8小时,并且最优选约6小时。
46.退火过程将氨硼烷转化为六方氮化硼(hbn)。在一些实施例中,产生了hbn纳米片,并且这些hbn纳米片是多晶的。
47.在一些实施例中,退火过程还导致用b和/或n原子掺杂载体结构,并且特别是用于载体结构的二维纳米结构材料。
48.如图1所示,气凝胶131的退火部分132包含已经从氨硼烷111转化的hbn 133。
49.退火过程可以以不同的方式影响载体结构,这取决于用于形成载体结构的材料和退火过程的温度。在一些实施例中,例如,当使用具有高熔点的二维纳米结构材料时,气凝胶131的退火部分132(有时被称为胶体纳米颗粒)含有二维纳米结构材料134和六方氮化硼(hbn)133。在一些实施例中,例如,当使用烃聚合物胶体时,退火过程可以导致例如胶体从杂化材料解聚和消除。在这些实施例中,气凝胶131的每个退火部分132包括六方氮化硼(hbn)133和空隙134,该空隙的体积基本上等于先前由烃聚合物胶体122占据的体积。
50.因此,在一些实施例中,所形成的气凝胶包含hbn 133或由其组成(参见例如图4),而在其他实施例中,所形成的气凝胶包含多个胶体纳米颗粒132或由其组成,每个胶体纳米颗粒含有hbn 133和二维纳米结构材料134(参见例如图5)。
51.载体结构(有时被称为“模板”)可以帮助确定最终气凝胶的结构。例如,如果使用球形的聚合物胶体,则hbn结构通常将具有球形空隙。如果使用非球形的聚合物胶体,则hbn结构将具有通常在非球形形状之后形成图案的空隙。在一些实施例中,仅使用单一胶体形状,而在其他实施例中,使用胶体形状的混合物。
52.气凝胶通常将是高度多孔的,并且通常将具有带有纳米孔隙度的粗糙表面。
53.返回参考图1,任选地,方法100还可以包括通过允许140至少一种化学试剂142(如聚二甲基硅氧烷(pdms))渗透气凝胶141来改变气凝胶的至少一种性质。也就是说,气凝胶的性能可以通过掺入渗透添加剂来调节。
54.气凝胶的性质通常包括物理性质如密度、机械性质如压缩强度、屈服强度、弹性/柔韧性等,以及电阻和电导率,如耐化学性或耐热性、导热性或导电性等。
55.在允许化学试剂渗透气凝胶之前,气凝胶可以例如在100℃的真空下脱气例如30分钟,以去除水分,以用于气凝胶与化学试剂之间的更好的润湿。渗透可以通过本领域技术人员已知的任何合适的方法完成,包括例如将气凝胶浸入化学试剂中,或者将化学试剂喷涂或以其他方式沉积在气凝胶上,然后允许毛细作用将试剂吸入气凝胶的孔中。在其他实施例中,使用真空抽吸将化学试剂抽吸到气凝胶中。
56.化学试剂可以包括技术人员已知的任何合适的化学试剂。优选地,化学试剂包含液体。在一些实施例中,化学试剂是硅酮或基于硅酮的聚合物。
57.在一些实施例中,当化学试剂渗透到气凝胶中时,气凝胶的密度受到影响。例如,如在图6中看到的,气凝胶的密度随着渗透到气凝胶中的pdms的量的增加而增加。具体地,对于该实例,用甲苯将pdms稀释至在甲苯中的10重量%、20重量%、40重量%和60重量%的浓度。然后将hbn气凝胶分成单独的气凝胶部分,并将每个气凝胶部分浸入稀释的pdms溶液
之一中过夜(即约12小时),然后在100℃下固化2小时。
58.在一些实施例中,当化学试剂渗透到气凝胶中时,气凝胶变得更加柔韧。例如,在气凝胶结构没有实质性变化(孔径的变化、结构的断裂等)的情况下,一种气凝胶无法被对折。在引入pdms之后,气凝胶能够被对折三次,然后展开,而气凝胶结构没有实质性的变化。
59.在一些实施例中,仅使用单一化学试剂。在其他实施例中,引入两种或更多种化学试剂。
60.因此,在一些实施例中,形成的气凝胶141包括以下或者由以下组成:hbn 133或多个胶体纳米颗粒132,每个胶体纳米颗粒含有hbn 133和二维纳米结构材料134;和任选地一种或多种化学试剂142。
61.在各种实施例中,所述二维纳米结构材料是石墨烯、过渡金属二硫属化物或mxene。在各种实施例中,气凝胶包含至少一种另外的添加剂(如pdms)。
62.在各种实施例中,胶体纳米颗粒含有聚合物(其含有二维纳米结构材料)、六方氮化硼或其组合。
63.如本领域中所理解的,可以对气凝胶进行额外的加工步骤。例如,气凝胶一旦形成,就可以被压缩以降低(或消除)其孔隙率。可替代地或另外地,气凝胶可以被粉末化以形成气凝胶粉末。气凝胶粉末可以随后与聚合物混合并浇铸成所需的形式(例如,形状、尺寸或图案)。在一些实施例中,将气凝胶粉末与粘合剂、溶剂或其组合混合。在一些实施例中,可以将催化剂或催化剂前体添加到气凝胶中以形成气凝胶负载的催化剂。催化剂可以包含过渡金属,例如选自钯、铑、钌、铂、镍、铜、锇等的过渡金属。在一些实施例中,这些各种技术被进一步组合(例如,将具有催化剂的气凝胶粉末分散在可以任选地含有聚合物或粘合材料的溶剂中)。
64.任选地,所述气凝胶可以被配置为用作涂层或用作结构部件。例如,在一些实施例中,将有机硅材料(如pdms或原硅酸四乙酯(teos))引入到气凝胶中以允许气凝胶用作超轻质结构材料。在其他实施例中,将粘合剂层添加到气凝胶的一侧以允许其附着到例如热敏部件。在一些实施例中,氧化石墨烯-hbn纳米颗粒被分散在适当的溶剂中,并且被涂覆在各种表面上以用于期望的应用,如阻燃剂、太阳能吸收器、催化剂、用于能量存储的电极、水净化、热平台等。在一些实施例中,气凝胶用于机械阻尼、汽车或航空航天应用。
65.所公开的材料可以用于广泛的技术应用,尤其包括燃料电池、太阳能电池和li离子电池、超级电容器、催化和催化剂载体中的能量存储和转换;吸附应用(例如,co2、h2)、气体纯化、分离技术、药物递送、环境补救、水脱盐、纯化和分离、传感器、电子、磁性装置和热应用。此外,所公开的材料具有用于包装、汽车工业、建筑隔离、热隔离、航空航天应用(例如,高热发动机部件)和高温应用、隔音、其防火应用的潜力。
66.实例1
67.通过以下来形成hbn气凝胶:将聚苯乙烯胶体和固体氨硼烷混合,允许自组装,然后在氮气中在1100℃下退火12小时,随后在空气中在600℃下退火。所得到的hbn气凝胶为超轻质(约11mg/cm3)且多孔的。
68.为了说明气凝胶的耐火特性,使用了丙烷火焰炬(》1000℃)实验,其中将气凝胶暴露于丙烷火焰10分钟。在火焰暴露10分钟后,结构保持稳定且未改变(对于人眼而言)。
69.扫描电子显微镜(sem)表征显示,由于ps胶体模板,hbn气凝胶的微观结构由球形
孔组成。
70.实例2
71.如下形成各种石墨烯-hbn(g-hbn)气凝胶纳米颗粒。首先,将各种比率的go和ab的混合物组合,并允许自组装,如下所示:(i)90%go 10%ab;(ii)70%go 30%ab;(iii)50%go 50%ab;(iv)30%go 70%ab;和(v)10%go 90%ab。
72.在混合后,将混合样品在惰性气氛下在1100℃(5℃/分钟)下退火12小时。然后,将聚合物添加剂渗透到气凝胶结构中。特别地对于pdms渗透到g-hbn中,将184在甲苯中稀释至所需的浓度(此处为10%至60%),然后将每种g-hbn气凝胶浸入到稀释的pdms溶液中过夜(约12小时),然后在100℃下固化2小时。
73.本领域技术人员将认识到,或者能够仅使用常规实验来确定,本文描述的本发明的具体实施例的许多等同物。此类等同物旨在被所附的权利要求所涵盖。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献