一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高炉用高导热填料的制作方法

2022-11-13 13:53:18 来源:中国专利 TAG:


1.本发明属于耐火材料技术领域,具体涉及一种高炉用高导热填料。


背景技术:

2.现有技术中,高炉炉缸一般采用陶瓷杯加碳砖的砌筑结构,陶瓷杯可以隔离铁水和碳砖,保护碳砖免遭铁水、熔渣、碱金属、锌等有害化学元素的侵蚀,碳砖将陶瓷杯传来的热量及时导出至冷却壁冷却系统。陶瓷杯和碳砖的热膨胀系数有较大区别,因此两种砖之间会留有一定的间隙并填入材料来吸收膨胀产生的内应力。一般高炉该间隙填料为碳素捣打料,而在高炉开炉后,碳素捣打料硬化,大量挥发分逸出会导致材料产生较大收缩,高温下碳素捣打料的强度很低,陶瓷杯砖高温下产生较大膨胀,且其膨胀量与填料收缩量不同,导致填料和陶瓷杯之间会产生缝隙形成一层空气带“热阻层”,阻碍热量的及时导出,捣打料没有起到填充密实间隙传热的作用。由于空气带的存在炉缸整个传热系统受阻,1150℃铁凝等温线在陶瓷杯内向碳砖方向移动,陶瓷杯内温度升高,在铁水不断的环流冲刷、碱金属、锌等有害化学元素侵蚀作用下,陶瓷杯损毁速度加快,从而侵蚀填料及碳砖,造成碳砖出现环裂缝,炉缸温度升高甚至烧穿的风险。
3.cn201810643750.9公开了高炉炉底填缝料及其制备方法,采用加入碳化硅,金属-非金属复合粉,蓝宝石抛光液为结合剂,增加材料的施工性能和导热性能;虽然解决捣固密实度低,找平困难,碳素捣打料导热系数低的问题,但是材料以蓝宝石抛光液为结合剂,固化后形成了刚性填料,不能起到吸收热膨胀的作用。
4.cn201110370849.4公开了一种高炉用碳素捣打料及其制备方法,采用石墨化好的电锻煤,刚玉粉填充孔隙,提高堆积密度,提高使用寿命;虽然提高碳素捣打料的导热系数,但是材料中组分基本全为炭质原料,材料的抗冲刷侵蚀和抗氧化性能不高。
5.cn201010153111.8公开了一种用于高炉炉缸炉底间隙的捣打料,采用全天然石墨作为原料,提高了导热系数;虽然提高碳素捣打料的导热系数,但是材料中组分基本全为炭质原料,材料的气孔率高,抗侵蚀、抗氧化性能和强度不高。粒度为1~3的天然石墨价格非常昂贵,成本很高。


技术实现要素:

6.本发明目的在于提供一种高炉用高导热填料,能对陶瓷杯和碳砖之间进行很好的填充,高炉开炉后填料具有可压缩性,能很好的吸收陶瓷杯的热膨胀应力,且气孔率低,有较高强度和抗侵蚀渗透性,同时导热系数高,有效的保证炉缸传热系统的顺畅,保护陶瓷杯进而保护碳砖。
7.为达到上述目的,采用技术方案如下:
8.一种高炉用高导热填料,其组成按重量百分数计如下:
[0009][0010]
外加上述原料总重12~15%的环保焦油。
[0011]
按上述方案,所述的碳化硅集料为碳化硅-石墨坩埚废料破碎所得,含sic≥68%,c≥17.0%,粒度为5~0.074mm。
[0012]
按上述方案,所述的石墨胶体为天然石墨粉乳化所得,c≥90.0%,粒度为1~5μm。
[0013]
按上述方案,所述的α-al2o3微粉中含al2o3≥99.0%;d
50
≤1.5μm。
[0014]
按上述方案,所述的氮化硅铁为灰色粉体,其中氮化硅含量为70~80%,含有α和β两种晶型结构,铁含量为10~15%,粒度为≤0.075mm。
[0015]
按上述方案,所述的硅微粉中sio2≥94%,d
50
≤0.5μm。
[0016]
按上述方案,所述的膨胀剂为石英砂和蓝晶石的混合物,其中石英砂粒度为0.074~0.045mm,蓝晶石粒度为0.1~0.5mm,石英砂和蓝晶石质量比为7:3。
[0017]
按上述方案,所述的环保焦油中固定碳≥65.0%,水分≤0.6%,甲苯不溶物≤4.0%。
[0018]
相对于现有技术,本发明有益效果如下:
[0019]
在800℃以下时,材料主要起到吸收膨胀和导热作用。碳化硅-石墨坩埚废料经过反复烧结,致密度高,其中碳化硅和石墨经过了充分的结合,相比碳化硅和石墨分别单独加入,气孔率和吸水率均较低,结合剂加入量大幅降低,导热明显提高。石墨胶体是经过乳化的微米级均质分散体,均匀的包裹并填充在颗粒之间的空隙中,降低了气孔率,改善了材料的施工性能,同时石墨胶体粘附并渗透进陶瓷杯砖和碳砖的表层微孔隙中,使陶瓷杯砖、碳砖和填料形成一个整体,提高了导热系数。材料中膨胀剂中产生体积膨胀使填料产生一定体积膨胀,抵消了材料的的炭化收缩,在受到陶瓷杯砖的膨胀应力时,焦油结合材料具有一定的可压缩性,可以与两侧砖密贴紧密的填充在间隙中,有效的吸收陶瓷杯的膨胀应力。氮化硅铁中少量fe的弱氧化会促进部分材料的中低温烧结,材料致密度提高,气孔率降低,导热进一步提高。
[0020]
当陶瓷杯出现侵蚀、裂缝、破损时,材料所处部位环境温度上升到800℃以上,并受到碱金属等化学侵蚀,渣铁渗透侵蚀等,材料主要起到抵抗冲刷、渗透侵蚀的作用。氮化硅铁中少量fe3si形成液相,填充了材料中的气孔,同时si3n4发生晶型转变,由α相转变为β相,促进了高温下莫来石化烧结反应,产生膨胀效应。si3n4在高温下与微米级c反应生成sic晶须,同时伴随有sio2生成,使针状和柱状si3n4和sic形成交叉网络结构,sio2填充了气孔,材料气孔率降低,强度大幅提高,更好的抵抗冲刷侵蚀渗透。
[0021]
本材料采用环保焦油,残炭量高,通过改性工艺大幅降低了焦油中甲苯不溶物的含量,很大程度上减少了对环境的污染。实现了碳化硅-石墨坩埚废料的回收再利用,变废
为宝,节约了大量矿物资源和能源,减少了环境污染。
具体实施方式
[0022]
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。
[0023]
具体实施方式提供了一种高炉用高导热填料,其组成按重量百分数计如下:
[0024]
碳化硅集料45~55%;石墨胶体10~18%;α-al2o3微粉4~8%;氮化硅铁16~20%;硅微粉2~5%;膨胀剂5~10%;外加上述原料总重12~15%的环保焦油。
[0025]
具体地,所述的碳化硅集料为碳化硅-石墨坩埚废料破碎所得,含sic≥68%,c≥17.0%,粒度为5~0.074mm。
[0026]
具体地,所述的石墨胶体为天然石墨粉乳化所得,c≥90.0%,粒度为1~5μm。
[0027]
具体地,所述的α-al2o3微粉中含al2o3≥99.0%;d
50
≤1.5μm。
[0028]
具体地,所述的氮化硅铁为灰色粉体,其中氮化硅含量为70~80%,含有α和β两种晶型结构,铁含量为10~15%,粒度为≤0.075mm。
[0029]
具体地,所述的硅微粉中sio2≥94%,d
50
≤0.5μm。
[0030]
具体地,所述的膨胀剂为石英砂和蓝晶石的混合物,其中石英砂粒度为0.074~0.045mm,蓝晶石粒度为0.1~0.5mm,石英砂和蓝晶石质量比为7:3。
[0031]
具体地,所述的环保焦油中固定碳≥65.0%,水分≤0.6%,甲苯不溶物≤4.0%。
[0032]
实施例1
[0033]
一种高炉用高导热填料,将石墨胶体17%(重量百分比,下同)、碳化硅集料45%、α-al2o3微粉8%、硅微粉3%、膨胀剂8%、氮化硅铁18.4%充分混合均匀,外加入13.5%的环保焦油结合剂后在轮碾机中混碾20min,即得到本发明填料。将填料放入三联试模160mm
×
40mm
×
40mm内捣打成型,成型后的试样经过300℃
×
243干燥后制得本发明高导热填料。本实施例1的填料试样的理化性能检测结果见表1,所述检测按现行国家标准或行业标准进行,检测结果为三组检测值的平均值。
[0034]
表1
[0035][0036]
实施例2
[0037]
一种高炉用高导热填料,将石墨胶体13%(重量百分比,下同)、碳化硅集料55%、α-al2o3微粉6%、硅微粉4.6%、膨胀剂5%、氮化硅铁16%充分混合均匀,外加入14.3%的环保焦油结合剂后在轮碾机中混碾20min,即得到本发明填料。将填料放入三联试模160mm
×
40mm
×
40mm内捣打成型,成型后的试样经过300℃
×
243干燥后制得本发明高导热填料。本
实施例2的填料试样的理化性能检测结果见表2。
[0038]
表2
[0039][0040]
实施例3
[0041]
一种高炉用高导热填料,将石墨胶体10%(重量百分比,下同)、碳化硅集料52%、α-al2o3微粉7%、硅微粉2%、膨胀剂8.3%、氮化硅铁20%充分混合均匀,外加入13.8%的环保焦油结合剂后在轮碾机中混碾20min,即得到本发明填料。将填料放入三联试模160mm
×
40mm
×
40mm内捣打成型,成型后的试样经过300℃
×
243干燥后制得本发明高导热填料。本实施例3的填料试样的理化性能检测结果见表3。
[0042]
表3
[0043][0044]
实施例4
[0045]
一种高炉用高导热填料,将石墨胶体15.2%(重量百分比,下同)、碳化硅集料48%、α-al2o3微粉4%、硅微粉5%、膨胀剂10%、氮化硅铁17%充分混合均匀,外加入14.6%的环保焦油结合剂后在轮碾机中混碾20min,即得到本发明填料。将填料放入三联试模160mm
×
40mm
×
40mm内捣打成型,成型后的试样经过300℃
×
243干燥后制得本发明高导热填料。本实施例4的填料试样的理化性能检测结果见表4。
[0046]
表4
[0047][0048]
实施例5
[0049]
一种高炉用高导热填料,将石墨胶体18%(重量百分比,下同)、碳化硅集料49%、α-al2o3微粉6%、硅微粉3.5%、膨胀剂7%、氮化硅铁16%充分混合均匀,外加入14.3%的环保焦油结合剂后在轮碾机中混碾20min,即得到本发明填料。将填料放入三联试模160mm
×
40mm
×
40mm内捣打成型,成型后的试样经过300℃
×
243干燥后制得本发明高导热填料。本实施例5的填料试样的理化性能检测结果见表5。
[0050]
表5
[0051][0052]
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献