一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

空间位阻可调型弱碱光稳定剂及其制备方法和应用与流程

2022-08-23 23:59:34 来源:中国专利 TAG:

空间位阻可调型弱碱光稳定剂及其制备方法和应用
1.本发明是申请号为202011250638.2,申请日为2020年11月11日,发明名称为“空间位阻可调型弱碱光稳定剂的结构及其制备方法和应用”的中国发明专利申请的分案申请。
技术领域
2.本发明专利属于新化合物及其合成方法领域,具体涉及空间位阻可调型弱碱光稳定剂及其制备方法和应用。


背景技术:

3.高分子材料在当今发达世界里扮演者越来越重要的角色,从一次简单成型不同的工业一次性产品到太空使用高科技元件无所不在。这样多样复杂的应用就要求高分子材料不同的物理化学性质必须符合特定应用所需多样性而产生的要求。因此,高分子材料变得越来越复杂了,它们不但由各种基础聚合物构成,还需要加入大量多样的添加剂包括不同的功能助剂,这些功能添加剂在赋予高分子材料所需要呈现特有性能方面起着决定性作用。在高分子添加剂中,光稳定剂和抗氧化稳定剂可谓是最重要的一类,其抗氧剂功能就是有效率的提供给高分子聚合物在加工和使用过程中去抵加工抗热老化、环境其它氧化因素和紫外光引起的降解。这对高分子材料具有特别重要的意义,高分子抗氧化稳定剂的品质直接可以预测产品使用寿命和避免因产品失效而产生的至关重要的负面影响。
4.光稳定剂在高分子材料制件使用中呈现出越来越重要的地位,它们提供给聚合物产品非常有效的抗光降解保护作用。
5.光稳定剂系列在保护高分子工作机理上划分包括三大类型:紫外线吸收剂(ultraviolet absorber,简称uva),受阻胺光稳定剂(hindered amine light stabilizer,简称hals),和光淬灭剂(quenchers)。在实际应用中依据光强度和所需保护力度,这三种光稳定剂可以单独使用或混合物使用。光吸收剂uva吸收过滤掉有害的紫外线,把它转化为热能,电磁波和无害的长波段光,有助于防止高分子材料降解,还可以防止光敏感的涂料、粘合剂和密封剂等的变色和分层。
6.受阻胺类光稳定剂最在20世纪70年代日本三菱公司就开发出ls-744,即苯甲酸2,2,6,6-四甲基哌啶脂,1974年瑞士ciba-geigy公司也合成了相同的产品。光稳定剂对高分子材料保护效果是传统吸收型的4倍多,且相容性好,国际上受阻胺类光稳定剂年用量增长率为20%-30%,消费总量已占高分子稳定剂总量的44%,跃居各类稳定剂之首。据2019年全球高分子稳定剂市场第三方预测报到光稳定剂在2019年达7900亿美金市场,到2027年可达14154.7亿美金市场,每年增长率约7.6%。近几十年来,由于受阻胺类光稳定剂需求领域不断扩宽,创新研发一直是非常活跃,不断有新的小分子和寡聚分子产品出现,但是都是基于2,2,6,6-四甲基哌啶胺受阻胺母核结构。
7.受阻胺光稳定剂活性功能基团结构如下:
[0008][0009]
在如上四甲基哌啶胺受阻胺母核活性功能基通用结构式中,市场广泛使用的受阻胺光稳定剂为结构-a型光稳定剂成本最低。常见市场产品受阻胺光稳定剂包括cyasorb 3853,hostavin 3050,hostavin tm n 20,tinuvin 770,hostavin 3052,hostavin 3058,hostavin 3055,uvinul 4050h,chimassorb 2020,uvasorb ha 88,chimassorb 944等。
[0010]
然而,这类四甲基哌啶受阻胺母核结构受阻胺光稳定剂不能应用于pvc,pc,pu,聚酯类等高聚物中,其主要原因是其主要原因是因为四甲基哌啶胺这类受阻胺母核中的n原子呈现相对较强的碱性与亲核性能,在加工使用过程中具有亲核性能的氮原子易与高聚物上具有亲电性或呈现酸性官能团反应,因此催化加速酸性高分子材料降解。
[0011]
降低四甲基哌啶胺hals母核的碱性或亲核性能是拓宽受阻胺光稳定剂应用范围的唯一途径。到目前为止,降低四甲基哌啶受阻胺hals中氮原子碱性的方法有两种:(1)在哌啶胺n-h键上进行烷基化,形成n-r键,这样增大了哌啶胺中氮原子周边的空阻效应,从而达到了降低哌啶胺碱性目的;(2)在哌啶胺n-h键引进烷氧基形成n-or键,这样哌啶胺中的氮原子从电负性降低角度和氮原子周围空阻效应增大双重效应降低了碱性。
[0012]
受阻胺hals光稳定剂是自由基捕获剂的一种,其作用机理十分复杂,主要是通过以下几个方面的机理的协同作用来达到光防护效果:(1)捕获自由基;(2)分解氢过氧化物;(3)捕获重金属。
[0013]
具有结构-b和结构-c型母核四甲基哌啶胺类型受阻胺光稳定剂被称为弱碱性光稳定剂,这类n-or型光稳定剂产品,如chimassorb 119,tinuvin 144,tinuvin 292,tinuvin 152,tinuvin 371,flamestab 116,tinuvin 622,cyasorb 3529,已经应用于市场。
[0014]
如上所示的弱碱型受阻胺结构都比常规受阻胺结构更加复杂,事实上,无论小分子弱碱型受阻胺光稳定剂还是寡聚弱碱型受阻胺光稳定剂与常规型受阻胺相比,都要经过额外的合成步骤才能得到这些产品。因此,在成本价格上会更加昂贵,额外的化学合成也会给绿色环境保护带来更加大的压力。


技术实现要素:

[0015]
本发明专利首次报道空间位阻可调型,氮原子弱碱性能可控型,不含有环状2,2,6,6-四甲基哌啶胺结构片段的创新性结构光稳定剂。
[0016]
创新型小分子光稳定剂通式如下:
[0017][0018]
其中,x为nh,nr3,o;
[0019]
y为h,甲基,乙基或其它烷基;
[0020]
n1=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22;
[0021]
n=1-15为寡聚物的聚合度;
[0022]
n等于n1,或者n不等于n1;
[0023]
r为c2-c18的直链或支链烷烃;或者为异丙基,异丁基,异戊基,异己基,异辛基,异癸基;
[0024]
r为含有双键的烷基;或者为含有杂原子的取代基,或者为-oh,-or1,酯基,羧基,腈基。
[0025]
具体的,本发明所述的创新型小分子光稳定剂结构包括:
[0026][0027]
上述空间位阻可调型弱碱光稳定剂的制备方法,反应式如下:
[0028][0029]
所述制备步骤包括:
[0030]
(1)在氮气保护搅拌下将原料1加入到反应瓶中,然后加入1-3份的有机溶剂或不
加溶剂,然后加入100-1000ppm的催化剂1或不加催化剂,降低温度到5-10℃,缓慢滴加丙烯酸甲酯或甲基丙烯酸甲酯;在滴加完毕后升温至室温搅拌5-18小时,加热到30-70℃继续反应5-24小时;tlc监测反应进程直到反应完全,真空下除掉过量的丙烯酸甲酯和溶剂和催化剂,剩余反应中间体未经进一步纯化,用于下步反应;
[0031]
(2)在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入原料2,然后加入0.01-5%催化剂2或不加催化剂,完成加料后升温至50-70℃反应10-18小时,继续升温至80-140℃反应24-96小时,tlc跟踪反应进程,直到反应完全;除掉催化剂,加入重结晶溶剂进行重结晶,过滤给出白色粉末固体产品。
[0032]
进一步的,所述步骤(1)中的原料1包括烷基胺、芳香基取代烷基胺、羟胺、烷氧基胺或芳香基取代烷氧基胺。
[0033]
进一步的,所述步骤(1)中的有机溶剂包括甲醇、乙醇、乙酸乙酯、二氯乙烷、丙酮、乙腈或dmf。
[0034]
进一步的,所述步骤(1)中的催化剂1是邻位甲氧基对苯二酚、4,4-二酚羟基二苯二甲酮、间硝基苯酚、0.1-5%naoh、k2co3、10-30%硅胶或酸性氧化铝。
[0035]
进一步的,所述步骤(2)中的原料2是戊二胺、己二胺、癸二胺、己二醇、辛二醇、癸二醇。
[0036]
进一步的,所述步骤(2)中的催化剂2是甲醇钠、甲酸钠、二乙基氧化锡或加烷氧基铝。
[0037]
进一步的,所述步骤(2)的重结晶溶剂为含水5-10%乙醇或甲醇或乙酸乙酯或石油醚。
[0038]
本发明还公开了所述空间位阻可调型弱碱性光稳定剂在高分子材料领域提供光稳定性保护和抗氧化稳定性保护的应用。
[0039]
本发明设计发明的空间位阻可调型弱碱光稳定剂产品与市场上广泛使用的受阻胺(hals)光稳定剂产品相比,有着更加优越空阻可调功能,以及弱碱性能拓宽了应用广泛性。它们虽然都能提供给高分子材料提供不同程度的耐候性能保护,但是从化学功能基团结构上来看,四甲基哌啶胺受阻胺(hals)是一类已经一直沿用约半个世纪以来的光稳定剂,其结构特征为:每个受阻胺光稳定剂产品分子结构都含有环状2,2,6,6-四甲基哌啶胺功能基团结构这一受阻胺功能结构可以迅速转移高聚物上光引发降解产生的活性游离基,因而对高分子材料起到非同小可的耐候保护作用,同时有一定抗氧化作用。
[0040]
约半个世纪一直延续广泛应用的受阻胺hals光稳定剂由于特定化学结构四甲基哌啶胺本身结构界定的偏碱性和亲核性功能使它的应用在一些高分子材料中的应用受到限制,像pvc,pc,聚酯类,pu类等,具有亲核性或碱性的四甲基哌啶胺氮原子会与这些具有一定酸性或亲电性能的高分子材料反应,从而起到的降解这些高分子材料的作用。如下面的反应方程式呈现了受阻胺hals如何参与降解pvc高分子材料的机理。
[0041][0042]
为了减弱受阻胺光稳定剂亲核性能或碱性,修饰受阻胺氮原子通常有两种方法:(1)在四甲基哌啶胺氮原子上引进甲基或烷基,增加哌啶胺周边空间位阻,从而减弱其碱性或亲核性能;(2)在四甲基哌啶胺氮原子上引进烷氧基团,既能降低哌啶胺氮原子的电负性,又能增加氮原子周边空间位阻,因而起到了降低碱性和亲核性能作用。
[0043]
无论通过引进烷基增加空阻减小碱性或亲核性进攻能力,还是引进烷氧基降低氮原子电负性,同时增大空阻降低其碱性或亲核性进攻能力都要经历过1-3步的额外化学反应,特别需要涉及到氧化,还原或烷基化反应,这些化学反应不但给环保增加额外负担,还增加了额外产品成本,因此弱碱型受阻胺类产品与普通受阻胺产品比较市场价格格外的高。
[0044]
本发明的创新型光稳定结构中,避开了一直以来延续使用环状2,2,6,6-四甲基哌啶胺功能结构片段,从一个完全不同的新的视觉设计了氮原子周边取代基空件位阻和官能团极性控制,通过调整氮原子周围取代基的大小,氮原子周边空间位阻大小是可调可控型的,这样就可以通过控制氮原子周边空阻特征提供做需要的调低碱性的受阻胺类化合物,进而使其适应于各种有一定亲电性能的高分子材料光降解保护应用范围。此外,本发明原料易得,所设计的绿色合成工艺大大的简化了合成步骤,减少了所产生的合成三废,减少了合成成本。另外,本发明的创新设计的结构,为高分子材料光稳定剂选择提供了新的机遇。
[0045]
本发明的创新型光稳定剂通过在以上结构通式中建立氮原子周边产生空间位阻的取代基大小从而进行调整其空间位阻,此外,通过调整极性基团的远近可以影响氮原子的电负性,从而调整了它的碱性或亲核性能。通过调控氮原子所处环境中的空间位阻和亲核性能或碱性获得所想要的效果,进而拓宽这类创新型光稳定剂的应用范围,使其适于pc,聚酯,pvc等偏酸性或具有一定亲电性高分子材料使用作为光稳定性保护助剂。
[0046]
此外本发明公开的产品的原料易得,采取了绿色环保合成工艺,三废产生的少,为推广应用提供了最佳条件。
[0047]
本发明的目的是设计并合成出空间位阻可调型弱碱性光稳定剂,解决了到目前为止受阻类光稳定剂(hals)难以应用于偏酸性或具有亲电性能的高聚物作为光稳定性能保护助剂的缺憾;同时由于结构取代基的侧链性能和分子中其它极性官能团极性的可调节性能,使其与高分子聚合物的匹配性增加;另外本发明设计创新型光稳定剂打破了环状2,2,6,6-四甲基哌啶胺固定结构作为光稳定剂活性功能基团近半个世纪的垄断结构,它的特征结构在化学合成中无法避开,尤其将常规受阻胺结构转化为弱碱型受阻胺光稳定剂额外的化学合成步骤是不可避免的,这些使成本与环境都呈现出无法改进的状态。
[0048]
本发明的空间位阻可调型的弱碱型光稳定剂,原料易得,并且可以通过绿色环保工艺合成出预期产品,大大的方便了其生产和广泛应用,使它有机会成为所有高分子材料(包括pvc,pc,pu,聚酯等)有价值的光稳定性保护助剂。
[0049]
本发明专利首次报道空间位阻可调型,氮原子弱碱性能可控型,不含有环状2,2,
6,6-四甲基哌啶胺结构片段的创新性结构光稳定剂。
[0050]
本发明专利创新化学结构产品可以直接应用于高分子材料中提供有效的光稳定性保护和抗氧化稳定性保护,可起到对高分子材料制品在使用中长期保质,保色,保持功能的作用,可以应用于塑料,橡胶,纤维,薄膜,涂料,油漆,油墨和石油等系列产品中,其市场及其广大。
[0051]
本发明目的在于:
[0052]
(1)设计并合成出空间位阻可调型弱碱性或近中性光稳定剂,并且使其可以应用于所有高分子材料(包括pvc,pc,pu,聚酯等),提供更广泛有价值的光稳定性保护作用。
[0053]
(2)提供更多光稳定性功能基团结构,打破长期以来国际市场以2,2,6,6-四甲基哌啶胺作为唯一光稳定性功能基的局面。
[0054]
(3)为市场提供更加简化操作绿色环保型光稳定剂的合成方法。
[0055]
与现有技术相比,本发明解决了如下问题:
[0056]
(1)解决和改变了有史以来固定空间位阻的光稳定剂2,2,6,6-四甲基哌啶胺作为唯一选择的状态。
[0057]
(2)新设计发明光稳定剂结构依据所需要空间位阻和光稳定剂的碱性和亲核性能都是可调节的,拓宽了光稳定剂在高分子材料中的应用范围。
[0058]
(3)所设计的弱碱型和弱亲核型创新结构光稳定剂给现在不能使用受四甲基哌啶胺阻胺光稳定剂的高分子材料pvc,pc,聚酯,pu等提供了新机遇,为这些高分子材料提供了更好紫外光保护剂的选择。
[0059]
(4)解决了2,2,6,6-四甲基哌啶胺类碱性光稳定剂与酸性助剂不匹配的状况。
[0060]
(5)突破了市场弱碱型光稳定合成方法繁杂途径,用优化简捷绿色合成方法合成出新型光稳定剂。
[0061]
(6)本发明空间位阻可调型弱碱性光稳定剂与高分子材料呈现更好相容匹配性,以此提升了抗热老化抗光老化抗黄变性能和延长使用寿命。
附图说明
[0062]
图1pp-t20样条烘箱热老化和紫外光老化对比测试结果(注:(1)上排样条为150℃烘箱热老化192小时结果,下排样条为在70℃下uvb紫外光老化157小时结果;(2)测试对比标样:b1为3853,b2为770,b3为622;(3)b4-b13为本发明创新抗氧剂和空阻可调型光稳定剂)。
[0063]
图2abs样条烘箱热和紫外光老化后对比测试结果(注:(1)上排样条为110℃烘箱热老化178小时结果,下排样条为在70℃uvb光老化113小时结果;(2)测试对比标样:c1为3853,c2为770,c3为622;(3)c4-c12为瑞康创新抗氧剂和空阻可调型光稳定剂)。
[0064]
图3pc样板uvb在70℃下uvb紫外光老化47小时对比测试结果1(抗氧剂ao 光稳定剂(2:1):0.1%;uv老化测试设备为q-lab)。
[0065]
图4pc样板uvb在70℃下紫外光老化17小时对比测试结果2((1)上排样条为150℃烘箱热老化17小时结果,下排样条为在70℃uvb光老化48小时结果;(2)测试对比标样:c3为622,c5为2020;(3)c1,c2,c4为瑞康创新抗氧剂和空阻可调型光稳定剂;(4)uvb光老化测试设备为q-lab uv光老化测试仪苏州广郡zn-pb)。
[0066]
图5pc样板在70℃下uvb紫外光老化对比测试结果3(注:(1)下排pc样板为老化前pc样板;(2)上排为在70℃下uvb紫外光老化24小时的样板(3)对比标准样品:uv2020(#3)和uv119(#1))。
具体实施方式
[0067]
表格1:创新空阻可调型弱碱性光稳定剂实例结构
[0068]
质谱设备:thermo finnigan lcq advantage赛默飞
[0069]
nmr设备:avance iii 400mhz瑞士布鲁克
[0070]
[0071]
[0072][0073]
表1中有机化合物化学结构式包括了本发明如上列出的创新型光稳定剂结构通式所代表的实例结构,其合成方法以无溶剂绿色化学合成方法,催化剂降低其反应活化能,使得目标产物合成顺利完成。
[0074]
(1)创新光稳定剂合成路线
[0075][0076]
(2)通用合成方法
[0077]
一、在氮气保护搅拌下将烷基胺或芳香基取代烷基胺或羟胺或烷氧基胺或芳香基取代烷氧基胺(0.90-1.15mmol)加入到反应瓶中,然后加入1-3份的甲醇或乙醇或乙酸乙酯或二氯乙烷或丙酮或乙腈或dmf或不加溶剂,然后加入100-1000ppm的邻位甲氧基对苯二酚或4,4-二酚羟基二苯二甲酮或间硝基苯酚或0.1-5%naoh或k2co3或10-30%硅胶或酸性氧化铝或不加催化剂,降低温度到5-10℃,缓慢滴加丙烯酸甲酯或甲基丙烯酸甲酯(2.1-4.5mmol)。在滴加完毕后升温至室温搅拌5-18小时,加热到30-70℃继续反应5-24小时。tlc监测反应进程直到反应完全,真空下除掉过量的丙烯酸甲酯和溶剂和催化剂,剩余反应中间体未经进一步纯化,用于下步反应。
[0078]
二、在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入戊二胺或己二胺或癸二胺或己二醇或辛二醇或癸二醇(1.95-2.20mmol),然后加入0.01-5%甲醇钠或甲酸钠或不加催化剂或剂二乙基氧化锡或加烷氧基铝,完成加料后升温至50-70℃反应10-18小时,继续升温至80-140℃反应24-96小时,tlc跟踪反应进程,直到反应完全。除掉催化剂,加入含水5-10%乙醇或甲醇或乙酸乙酯或石油醚重结晶,过滤给出白色粉末固体产品,干燥,产率80-90%。
[0079]
(3)产品实例合成方法
[0080]
实例结构a的合成方法:
[0081][0082]
一、在氮气保护搅拌下将正丁胺(1.5-3.5mmol)加入到反应瓶中,开启搅拌,然后加入1-3份的甲醇或乙醇或乙酸乙酯或二氯乙烷或丙酮或乙腈或dmf或不加溶剂,然后加入100-700ppm的邻位甲氧基对苯二酚或4,4-二酚羟基二苯二甲酮或间硝基苯酚或不加催化剂,降低温度到10-20℃,然后缓慢滴加丙烯酸甲酯(2.1-4.0mmol)。在滴加完毕后升温至室温搅拌10-18小时,加热到35-60℃继续反应15-24小时。tlc监测反应进程直到反应完全,真空下除掉过量的丙烯酸甲酯,剩余反应中间体未经进一步纯化,用于下步反应。
[0083]
二、在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入己二醇(0.95-1.02mmol),然后加入二丁基氧化锡或四丁氧基铝,完成加料后升温至50-80℃反应8-12小时,继续升温至90-150℃反应24-96小时,tlc跟踪反应进程,直到反应完全。除掉催化剂,加入含水5-10%乙醇或甲醇或乙醇或甲基丁基醚或石油醚重结晶,过滤给出白色粉末固体产品,干燥,产率90.6%。
[0084]
实例结构b的合成方法:
[0085][0086]
一、在氮气保护搅拌下将正丁胺(1.5-3.5mmol)加入到反应瓶中,开启搅拌,然后加入1-3份的甲醇或乙醇或乙酸乙酯或二氯乙烷或丙酮或乙腈或dmf或不加溶剂,然后加入100-700ppm的邻位甲氧基对苯二酚或4,4-二酚羟基二苯二甲酮或间硝基苯酚或不加催化剂,降低温度到10-20℃,然后缓慢滴加丙烯酸甲酯(2.1-4.0mmol)。在滴加完毕后升温至室温搅拌10-18小时,加热到35-60℃继续反应15-24小时。tlc监测反应进程直到反应完全,真空下除掉过量的丙烯酸甲酯,剩余反应中间体未经进一步纯化,用于下步反应。
[0087]
二、在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入己二胺(0.95-1.02mmol),然后加入甲酸钠或甲醇钠,然后升温至60-80℃反应18-24小时,继续升温至90-130℃反应48-96小时,tlc跟踪反应进程,直到反应完全。除掉催化剂,加入含水5-10%乙醇或甲醇或乙醇或甲基丁基醚或石油醚重结晶,过滤给出白色粉末固体产品,干燥,产率89.3%。
[0088]
实例结构c的合成方法:
[0089][0090]
一、在氮气保护搅拌下将羟胺盐酸盐或羟胺硫酸盐(1.1-1.5mmol)加入到反应瓶中,开启搅拌,然后加入1-3份的甲醇水溶液或乙醇水溶液(2:1),然后在5-15℃加入氢氧化钠或碳酸钾(1.2-2mmol),然后缓慢滴加丙烯酸甲酯(2.1-4.0mmol)。在滴加完毕后升温至室温搅拌15-24小时。tlc监测反应进程直到反应完全,加入乙酸乙酯或二氯甲烷或甲基丁基醚萃取目标中间体,干燥,真空下除掉过量的丙烯酸甲酯和溶剂,剩余反应中间体未经进一步纯化,用于下步反应。
[0091]
二、在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入己二胺(0.95-1.02mmol),加入0.1-2%甲酸钠或甲醇钠,然后升温至50-70℃反应15-24小时,继续升温至70-130℃反应72-96小时,tlc跟踪反应进程,直到反应完全。除掉催化剂,加入含水5-10%乙醇或甲醇或乙醇或甲基丁基醚或石油醚重结晶,过滤给出白色粉末固体产品,干燥,产率92.5%。
[0092]
实例结构d的合成方法:
[0093][0094]
一、在氮气保护搅拌下将羟胺盐酸盐或羟胺硫酸盐(1.1-1.5mmol)加入到反应瓶中,开启搅拌,然后加入1-3份的甲醇水溶液或乙醇水溶液(2:1)或加乙酸乙酯或加二氯乙烷或不加溶剂,然后在5-15℃加入氢氧化钠或碳酸钾(1.2-2mmol)或三乙胺,然后缓慢滴加丙烯酸甲酯(2.0-4.0mmol)。在滴加完毕后升温至室温搅拌15-24小时。tlc监测反应进程直到反应完全,加入乙酸乙酯或二氯甲烷或甲基丁基醚萃取目标中间体,干燥,真空下除掉过量的丙烯酸甲酯和溶剂,剩余反应中间体未经进一步纯化,用于下步反应。
[0095]
二、在氮气保护和搅拌下,室温向第一步反应得到的中间体中先分批加入己二醇(0.98-1.3mmol),加入0.1-5%三辛氧基铝和二丁基氧化锡,然后升温至70-90℃反应15-24小时,继续升温至100-150℃反应48-96小时,tlc跟踪反应进程,直到反应完全。除掉催化剂,加入含水5-10%乙醇或甲醇或乙醇或甲基丁基醚或石油醚重结晶,过滤给出白色粉末固体产品,干燥,产率90.1%。
[0096]
本发明创新型光稳定剂在不同高分子材料中的热老化性能测试和uvb光老化和300w紫外灯光老化性能测试,以及与国际市场常用牌号光稳定剂进行了平行对比测试,这些测试分别在pp,abs,pc高分子材料中测试完成。
[0097]
(1)本发明空间位阻可调型弱碱性光稳定剂在pp-t20中烘箱热老化和紫外光老化性能的对比测试
[0098]
a.双螺杆加工挤出造粒
[0099]
造粒是通过双螺杆挤出机(南京科亚ak36)挤出造粒完成:
[0100]
挤出机参数:
[0101]
一至十区温度(℃):160,190,210,220,220,220,210,210,210,200
[0102]
转速:300rpm
[0103]
表2:pp-t20配方
[0104][0105]
主抗b215:0.2%;(牌号见图1)
[0106]
光稳定剂:0.1%(牌号见图1)
[0107]
b.pp-t20样条制备
[0108]
pp-t20样条是用海天注塑机sa1200设备完成的。
[0109]
注塑机加工参数:
[0110]
一至五段温度(℃),200,210,210,205,190;
[0111]
注塑压力:58bar
[0112]
c.150℃烘箱热老化测试
[0113]
烘箱热老化遵循gb/t 7141-2008塑料热老化试验方法在热老化烘箱中完成。
[0114]
d.uvb光老化测试
[0115]
uvb光老化遵循gb/t 16422.1-2006塑料实验室光源暴露试验方法第1部分总则和gb/t 16422.3-2014塑料实验室光源暴露试验方法第3部分荧光紫外灯原则在uvb紫外光老化试验箱(q-lab苏州广郡)中完成测试。
[0116]
e.150℃烘箱热老化和uvb紫外光老化测试结果(图1)
[0117]
f.结果讨论
[0118]
从pp-t20样条150℃烘箱热老化结果看,对比测试国际市场产品b1(3853)样条,b2(770)样条和b3(622)样条都明显比加入本发明产品的样条(b4-b13)颜色深,其中加入光稳定剂770样条(b2)颜色最深,加入622样条色浅些,加入3853光稳定剂的样条(b1)在这三个国际大公司产品中最浅。相比之下,加入本发明的光稳定剂样条(b4-b13)比加入国际市场光稳定剂的样条颜色都更加浅些。
[0119]
从vub紫外光老化测试结果来看,b7和b13颜色最浅,b8和b12号样条与加入3853(b1),770(b2),622(b3)样条白度相似,b4,b5,和b6样条颜色偏深些。
[0120]
本发明的空间位阻可调型弱碱性光稳定剂与高分子材料呈现出更好的相容匹配性,因此,它不但能提供更好的光稳定性保护,还起到更好的抗热老化保护和抗黄变性能。
[0121]
力学性能测试结果:
[0122]
表3:瑞康创新光稳定剂在pp-t20中的拉伸性能对比测试结果
[0123]
(对比样品:3853,770,622)
[0124]
批次号:ppt20 rk-pt-t20201014
[0125]
[0126][0127]
测试条件:
[0128]
实验室环境:温度23℃,湿度45%rh;状态调节:23℃,50%rh;
[0129]
执行标准:gb/t1040.2-2006/iso 527-2:1993;
[0130]
拉伸速度:50mm/min
[0131]
注:rk牌号尾数接英文字母l的光稳定剂为液体抗氧剂。
[0132]
综合力学拉伸数据来看:本发明在表1中力学拉伸性能测试结果与国际大公司市场产品比较,一些牌号在保持力学性能上呈现杰出的性能。
[0133]
(a)从热和光老化前后拉伸强度与市场在pp中最佳选择的市场光稳定剂3853,770,622进行对比结果上看,本发明一些牌号光稳定剂在平行老化对测试中呈现出更小的理学性能变化影响,例如rk-ab75s,rk-ab-76s,rk-ab77,rk-abuv721,rk-ab71l拉伸强度保持率在288小时热老化和207小时光老化之后都呈现出极其好的拉伸强度保持率,从数据上看没有明显老化影响,拉伸强度保持率基本上没有明显变化,在热老化结果看,比对比标样保持率更好。
[0134]
(b)从老化前后模量上看以及拉伸延伸率上看,本发明光稳定剂产品呈现出稍有优势的更好结果。
[0135]
(2)本发明空间位阻可调型弱碱性光稳定剂在abs中烘箱热老化和紫外光老化性能的对比测试
[0136]
a.双螺杆加工挤出造粒
[0137]
造粒是通过双螺杆挤出机(南京科亚ak36)挤出造粒完成:
[0138]
挤出机参数:
[0139]
一至十区温度:200,205,215,215,215,215,210,210,205,200
[0140]
转速:300m/s
[0141]
主抗:0.2%;光稳定剂:0.1%
[0142]
标准对比样品:c1样条:3808,c2样条770,c3样条:622。
[0143]
b.abs样条制备
[0144]
abs样条是用海天注塑机sa1200设备完成的。
[0145]
注塑机加工参数:
[0146]
一至五段温度,205,220,220,215,200;
[0147]
注塑压力:62bar
[0148]
c.110℃烘箱热老化测试
[0149]
所有abs样条均在110℃下遵循gb/t 7141-2008塑料热老化试验方法在热老化烘箱中完成。
[0150]
d.uvb光老化测试
[0151]
uvb光老化遵循gb/t 16422.1-2006塑料实验室光源暴露试验方法第1部分总则和gb/t 16422.3-2014塑料实验室光源暴露试验方法第3部分荧光紫外灯原则在uvb紫外光老化试验箱(q-lab苏州广郡)中完成测试。
[0152]
e.abs样条在110℃热老化和uvb光老化测试结果(图2)
[0153]
f.结果讨论
[0154]
abs是光老化引起黄变敏感的树脂,综合abs样条如上测试110℃烘箱热老化和uvb紫外光老化后的结果看,加入本发明创新牌号rk-ab79光稳定剂,主抗为rk-701的样条c7是抗黄变性能最好的,其次为c4号样条(加入了本发明创新光稳定剂rk-ab65s),再其次的为样条c9,c8,c5,这些样条与对比测试样条比较呈现明显的更好抗热老化抗黄变性能。综合起来看,本发明的空间位阻可调型弱碱性抗氧剂在黄变敏感的abs中仍能体现出明显的抗热黄变和抗光诱发的黄变的性能优势。
[0155]
(3)本发明空间位阻可调型弱碱性光稳定剂在pc中烘箱热老化和uvb紫外光老化性能的对比测试
[0156]
a.样板制备
[0157]
pc树脂料:pc2805上海科思创
[0158]
pc样板制备在海天注塑机sa1200设备完成的
[0159]
b.pc样板加工参数
[0160]
pc样板制备在海天注塑机sa1200设备完成的
[0161]
加工参数:1-5段温度(℃)266,273,273,268,265
[0162]
压力:90bar
[0163]
速度:44rpm
[0164]
c.pc样板老化测试
[0165]
(i)150℃烘箱热老化测试结果
[0166]
表4:pc板150℃烘箱热老化4天(96小时)对比测试结果rrk-pt-pct20201102
[0167][0168]
(ii)uvb紫外光老化测试
[0169]
pc样板uvb在70℃下uvb紫外光老化47小时结果1(图3)
[0170]
pc板光老化后黄变程度有小到大排列如下:
[0171]
c2(pc-03)&c1(pc-02)《c3(622)《c5(pc-06)《c4(2020)
[0172]
pc样板uvb在70℃/17小时紫外光老化测试结果2(图4)
[0173]
表5:加入光稳定剂的pc板在70℃下uvb紫外光老化17小时对比测试结果
[0174][0175]
pc样板在70℃uvb紫外光老化结果3(图5)
[0176]
表6:pc板150℃烘箱热老化4天(96小时)对比测试结果rrk-pt-pct20201104
[0177]
[0178]
表6数据结果:
[0179]
色差:pc-10《pc-08《pc-07《uv119《uv2020《pc-11《pc-06《pc-09
[0180]
yi:13.24(pc-08)《14.31(pc-07)《14.33(pc-10)《15.23(uv119)《15.66(pc-11)《15.87(uv2020)《17.05(pc-09)《18.14(pc-06)
[0181]
d.结果讨论
[0182]
聚碳(pc)是光引发黄变最敏感的材料,在如上所述的pc样板150℃烘箱4天(96小时)热老化中(见表4-6),色差均在1-2.6之间,没有超过3的。然而uvb光老化4天(96小时)测试结果来看,色差明显变大,均在14-16之间。与国际品牌uv119和uv2020对比,本发明牌号pc-10,pc-08,pc-07三个牌号都呈现更好的抗光诱发黄变的功能。在每块板老化前后直观颜色对比中,也可以看到这三个牌号光老化后pc样板颜色浅些。
[0183]
综合起来看,本发明创新空阻可调型结构光稳定剂在结构空间位阻调整上优势大,氮原子周围电负性环境也可以调整,生产工艺绿色易操作,为高分子耐候性产品提供了可以降低成本多样化选择产品。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献