一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种Cu2I2双核簇配合物发光材料及其吡啶荧光传感

2022-08-03 00:22:47 来源:中国专利 TAG:

一种cu2i2双核簇配合物发光材料及其吡啶荧光传感
技术领域
1.本发明涉及发光材料技术领域,涉及光致发光材料领域,特别是涉及荧光传感材料领域。


背景技术:

2.可挥发性有机物(volatile organic compound)简称voc。可挥发性有机物品类是众多的,不稳定的,无处不在的。他们包括人为的化学化合物和自然产生。大多数挥发性有机化合物(voc)是以蒸气的形式传播。在我国以及世界上很多国家,人为排放voc是要受到法律制裁的。虽然有害的voc通常没有急性毒性,但在一个较长的时期内,不同浓度的voc暴露还是会不同程度地对健康产生影响的。但是,由于环境中的voc浓度通常是低的,症状发展也通常很缓慢而难以觉察,因此目前对voc及其影响的研究还有诸多困难和不便。
3.不过随着国民经济的快速发展,各行各业涉及voc利用或排放的情景普遍存在,比如石化工业、装修行业等等,这就带来很多的空气污染问题。比如,在房地产业中大量使用的各种有机/高分子建筑和装修材料,就带来了室内空气污染的问题,这些问题也广受关注。实际上,voc是室内空气污染的主要因素,其具体成分包括苯系物,有机氯化物,氟利昂系列,吡啶类化合物等,其来源主要是室内装修材料和家具方面的涂料、墙纸、地砖、绝热材料、粘结剂等。为了解空气中的voc状况,对其进行检测/检测就显得非常重要。现在已有的方法有:气相色谱法(gc),高效液相色谱法(hplc),膜技术处理挥发性有机物,仪器法测定voc,化学法分析挥发性有机物等。然而,这几种方法存在一定的短处,比如仪器小型化困难、不易携带、检测手续复杂、花费太高、检测时间过长、检测消耗样品、产生二次排放污染等问题。
4.相对于传统的检测方法,荧光传感检测方法正日益受到重视,并已有研发力量在不断投入。因为荧光传感器具有灵敏度高、可采集信号丰富、仪器易于小型化、不损耗样品、以及使用方便等优点,其发展也正在往全面实用化的方向稳步推进。荧光传感器主要分为两类:易于重复使用且能对气相物质传感响应的薄膜荧光传感器,以及在溶液中使用的均相荧光传感器。荧光传感器的主体结构通常情况下是由以下三个部分组成:外来物质的接受器、报告器、以及连接体。在整个荧光传感器结构中,接收器的作用是显而易见的,它负责外来分子的接收,信号的转化。所以接受器材料(也就是敏感材料)的选取和制备工艺是至关重要的,它直接决定了传感器的性能和应用范围。
5.而现有的发光材料有生物,无机材料,有机材料几大类,各自都存在优缺点。生物材料在生物监测领域具有极高的地位,但是在其他领域就比较大的局限性。无机材料因为本身的物理特性,在压力,温度传感方面等都有比较好的发挥空间,但是在气体,水源检测时存在问题。可能原因是,无机粉体虽然稳定性好,但由于其内部结构过于致密,发光中心很难受外部气氛影响,因此仅有对氧气等少数小分子传感的报道(sensors and actuators b-chemical 2018,254,578-587.),而对于voc的荧光传感则尚未见。而有机分子(纯有机材料)的结构、性质多样,便于设计和优化,目前也已经有一些voc荧光传感的报道。比如基于
分子间电荷转移(ct)的荧光猝灭机制,犹他大学zhang l.等于2007年报道了对于缺电子的硝基苯类爆炸物的传感检测,利用的荧光材料是p型有机半导体(journal of the american chemical society 2007,129(22),6978-6979.)。然而,有机材料的荧光受到分子堆积的影响非常大,聚集诱导荧光猝灭(acq)现象就是最突出的表现。总体而言,有机材料的稳定性和可靠性等问题的存在,仍然限制其发展。
6.根据现有的大量研究报道可以发现,配合物能通过无机和有机材料的配位杂化,形成稳定性较好的杂化型材料,并且能展现荧光传感的功能,因此是一种较好的有机结合无机材料和有机材料优点的解决方案。wenger曾综述了配合物的蒸气致变色现象及其voc传感应用前景,预测这是一种简便又廉价的方案(chemical reviews 2013,113(5),3686-3733)。但是就如文中提到的,目前该方面的研究者通常仅研究该现象的分子机制,而忽略了实际传感检测的定量、廉价等应用要求。特别需要提出的,目前报道的配合物所用铂和金都价格昂贵,要符合应用的廉价要求还得从普通金属入手。与其它金属相比,铜具有廉价、环保、无毒等优势,而且我国铜资源储量丰富,居世界第三位。而从目前已有的研究报道可见,亚铜配合物不仅基于廉价的金属,其发光性能也很好,而且可以通过结构调控发光性能(比如发光波长和量子产率等的调控),因此可以猜测亚铜配合物是一个极有前景的voc荧光传感检测的分子开发平台。当前的关键问题是,寻找/开发具有voc荧光响应性能的亚铜配合物传感材料,从而促进voc荧光传感技术的广泛应用。


技术实现要素:

7.本发明内容的目的是提供一种新的双核碘化亚铜配合物发光材料及其制备方法,以及该材料对吡啶的荧光传感应用。通过碘化亚铜与膦配体发生配位反应,方便且廉价地制备获得热稳定性能良好的碘化亚铜配合物发光材料,并且发现其对吡啶有快速且选择性的行荧光响应特性,响应后由原本微弱发光变成发出强烈的荧光。
8.本发明的技术方案之一,是提供一种新的双核碘化亚铜配合物发光材料,由cui与配体三(间甲基苯基)膦发生配位反应得到,其分子结构为(m-tol3p)2cui2cu(m-tol3p),式中m-tol3p为电中性膦配体三(间甲基苯基)膦。
9.所述双核碘化亚铜配合物发光材料为单斜晶系,p21/n空间群,晶胞参数为/n空间群,晶胞参数为α=90
°
,β=96.635(8)
°
,γ=90
°
,z=4,dc=1.519g/cm3,材料的晶体颜色为黄色;该材料结构表现为双核中性配合物,两个亚铜离子分别采用四面体型和平面三角形配位方式,且通过共用两个桥基碘离子构成共边连接的结构,两个亚铜之间也存在明显的金属间相互作用,从而导致双核簇芯的cui2cu四个原子不处于一个平面,而是呈现明显的v型结构;结构中四面体型配位亚铜处于cui2p2四面体中心,其中两个i是桥基碘离子,两个p分别来自于两个膦配体m-tol3p;结构中三角形配位的亚铜处于cui2p平面三角形中心,其中两个i是桥基碘离子,一个p来自于另一个膦配体m-tol3p;其分子结构如式(i):
[0010][0011]
所述碘化亚铜配合物发光材料在紫外光激发下发出较弱偏橙黄色的荧光;而将其置于吡啶蒸气环境后,会迅速呈现出类似荧光增强的发光效果,且发光颜色变为偏蓝绿色,因此可作为检测吡啶的传感材料。
[0012]
本发明的技术方案之二,是提供一种双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的制备方法。该制备方法是由cui与配体m-tol3p在机械球磨条件下发生配位反应,最后取出得到产物粉末而实现。其具体实施方案分为四步骤:
[0013]
(1)室温下将cui粉末和配体m-tol3p粉末称量后加入球磨罐中;
[0014]
(2)在球磨罐中加入球磨球,球料比为66:1,然后再加入0.5ml乙腈;
[0015]
(3)将球磨罐放入球磨机中,球磨机转速设置为240转/分钟,球磨处理4小时;
[0016]
(4)球磨结束后将球磨罐置于真空烘箱30℃烘干,所得粉末即为产物;
[0017]
(5)上述两种反应物的摩尔比cui:m-tol3p为2:3,上述球磨罐为体积50ml的玛瑙罐。
[0018]
本发明的技术方案之三,是提供一种基于双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的纸基荧光传感薄膜的制备方法。该制备方法是将双核碘化亚铜配合物(m-tol3p)2cui2cu(m-tol3p)溶解后,将溶液涂覆于纤维素薄膜而实现。其具体实施方案分为四步骤:
[0019]
(1)室温下将(m-tol3p)2cui2cu(m-tol3p)粉末溶解在二氯甲烷中;
[0020]
(2)将纤维素薄膜制作成所需要方便应用的形状,成为试纸原纸;
[0021]
(3)室温下将上述配合物(m-tol3p)2cui2cu(m-tol3p)溶液涂覆于试纸原纸上;
[0022]
(4)锟压后最后将涂覆好的试纸在真空条件下干燥,干燥完成后即得传感薄膜。
[0023]
本发明的技术方案之四,是提供一种双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)掺杂的荧光传感薄膜的制备方法。将碘化亚铜配合物(m-tol3p)2cui2cu(m-tol3p)包埋于ps(聚苯乙烯)中实现,其具体实施方案分为四步骤:
[0024]
(1)室温下将ps固体溶解在二氯甲烷中;
[0025]
(2)室温下将碘化亚铜配合物(m-tol3p)2cui2cu(m-tol3p)粉末溶解在二氯甲烷中;
[0026]
(3)将上述两种溶液混合,并搅拌使之充分均匀混合,得到澄清溶液a;
[0027]
(4)室温下将澄清溶液a旋涂或滴涂在石英基底上,干燥即得传感薄膜。
[0028]
本发明的技术方案之五,是提供一种双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)及其制成的纸基传感薄膜对吡啶蒸气的选择性荧光传感性能。原本发光较弱的负载配合物(m-tol3p)2cui2cu(m-tol3p)的试纸在吡啶气氛中响应后,能迅速观察到
非常亮的绿色发光(发射峰值波长约为λ
em
=510nm)。除此之外,在其他的voc气氛中,它仍然发光偏弱且颜色偏橙黄。其它多种voc蒸气的存在,于其对吡啶蒸气的荧光传感性能不产生可观测的影响。这些现象表明该双核碘化亚铜配合物发光材料对特定voc(吡啶蒸气)具有选择性响应的荧光传感性能。
[0029]
本发明的技术方案之六,是提供一种双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)及其制成的聚合物掺杂传感薄膜对吡啶蒸气的选择性荧光传感性能。原本发光较弱的负载配合物(m-tol3p)2cui2cu(m-tol3p)的试纸在吡啶气氛中响应后,能迅速观察到非常亮的绿色发光(发射峰值波长约为λ
em
=510nm)。除此之外,在其他的voc气氛中,它仍然发光偏弱且颜色偏橙黄。其它多种voc蒸气的存在,于其对吡啶蒸气的荧光传感性能不产生可观测的影响。这些现象表明该双核碘化亚铜配合物发光材料对特定voc(吡啶蒸气)具有选择性响应的荧光传感性能。
[0030]
本发明的有益效果,首先是所提供的双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p),该配合物材料原料易得,既具备廉价和易于纯化的优点,而且具有很好的溶解性和热稳定性,为材料的进一步应用提供了技术支持,端基配体膦配体m-tol3p和三配位亚铜中心的存在,使得该分子结构内部有合适的空间和潜在结合位点与voc分子相互作用,这为后续的传感性能研究提供了基础。
[0031]
本发明的有益效果,其次是双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)对吡啶有选择性响应的荧光传感应用,这种响应能在短时间内迅速完成,该配合物材料响应后的荧光性能很好,极少量的材料粉末都能发出强烈的荧光,因此实际应用时只需少量荧光粉,便于降低应用成本,而且易于操作的掺杂途径也为应用的成本控制提供方便;而将相同工艺制备的材料置于吡啶气氛中后,都能很快观察到荧光极大增强和颜色改变的传感响应特性;且其溶解性和稳定性都很好,便于作为荧光传感材料使用。
[0032]
本发明的有益效果,再次是所提供的基于双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的纸基荧光薄膜的吡啶传感应用,该纸基荧光薄膜的使用类似于一般的气体检测试纸一样简便,具体应用时,将纸基荧光薄膜在吡啶蒸气存在的环境中短时放置后,用紫外光源照射薄膜,可观察到其迅速有荧光增强和颜色改变出现,且吡啶浓度增高表现出强度增强的荧光响应效果,因此可作为便携式荧光传感试纸器件应用于吡啶的检测;该荧光传感薄膜可灵活制造成各种所需形状,质量很轻,非常便于携带,且也易于制备,为发光材料的进一步应用提供了技术支持。
[0033]
本发明的有益效果,最后是制备双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)及其传感膜的方法,具有工艺简便,所用设备简单,原材料简单易得,生产成本低,材料制备产率高,基本不消耗有机溶剂也不产生废液,可以在很短的时间内得到大量产品易于推广等优点。
附图说明
[0034]
图1.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)分子的单晶结构图。
[0035]
图2.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)中超分子二聚体结构图。
[0036]
图3.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)分子在单胞内及其周边空间的堆积图。
[0037]
图4.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的红外吸收光谱图。
[0038]
图5.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的紫外-可见吸收(uv-vis)光谱图。
[0039]
图6.双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)多晶粉末的荧光发射(pl)光谱图。
[0040]
图7.负载双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的纸基薄膜的荧光发射(pl)光谱图。
[0041]
图8.负载双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的纸基薄膜在吡啶气氛中响应前和响应一定时间后的荧光发射光谱图。
[0042]
图9.负载双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的纸基薄膜在吡啶气氛中响应前后的荧光变化时间动力学曲线图。
[0043]
图10.包埋双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的聚合物ps基薄膜在吡啶气氛中响应前和响应一定时间后的荧光发射光谱图。
具体实施方式
[0044]
本发明的实现过程和材料的性能由实施例说明:
[0045]
实施例1
[0046]
合成双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的多晶粉末,是以碘化亚铜和三(间甲基苯基)膦(缩写为m-tol3p)这两种物质为原料,按照以下方法制备:
[0047]
称取0.076g(0.4mmol)cui与0.183g(0.6mmol)m-tol3p(原料摩尔比2:3),置于球磨罐中,在球磨罐中加入0.5毫升的乙腈,作为液体助磨剂,再加入17g球磨球;玛瑙球磨球分两种,其直径分别为10mm和6mm,所用两种球磨球的数量比为1:5,球磨球与原料的球料比为66:1;球磨机转速设置为240r/min,时间设置为240min;球磨后置于真空烘箱中30摄氏度条件下烘干,即可得到产物多晶粉末,产率(按碘化亚铜计)为69.8%。将该配合物发光材料置于吡啶气氛中响应后,能迅速观察到非常亮的荧光发射。
[0048]
实施例2
[0049]
合成双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的单晶:按化学计量比1:2:1分别称取0.2mmol(38mg)的cui、0.4mmol(108mg)的m-tol3p和0.2mmol(28mg)的dmmp。将三种药品分别溶于5ml乙腈、5ml(3ml乙腈 2mlch2cl2)混合溶剂和5ml乙腈中,搅拌10min,使药品完全溶解,分别标为溶液1、2、3。溶液1为无色透明溶液,溶液2为无色透明溶液,溶液3为黄色透明溶液。先将溶液2和溶液1混合,得到无色透明溶液a,再将溶液3加入溶液a中,得到黄色溶液。充分反应15min后过滤,然后将滤液旋蒸至有粉末析出再过滤,将滤液置于一个干净的容积25毫升烧杯中并封口,静置缓慢挥发,数天后得到一些黄色块状晶体。挑选一颗0.49mm*0.42mm*0.33mm尺寸的黄色块状晶体用于x-射线单晶结构测试。该化合物的分子结构图示于附图1,通过芳香堆积作用形成的超分子二聚体结构示于图2,其晶胞堆积结构图示于附图3。
[0050]
实施例3
[0051]
负载双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的荧光传感薄膜的制备及其气氛响应:称取0.050g配合物发光材料(m-tol3p)2cui2cu(m-tol3p),使其完全溶解在7ml二氯甲烷中,溶液淡黄色澄清透明,过滤。将纤维素薄膜利用裁剪等方法制作成适合应用的大小和形状,作为后续工序中所用的试纸原纸;取适量滤液,将滤液用打印、浸涂或刷涂的方法涂覆在试纸原纸上;其中浸涂法制备的试纸需要用锟压机预压干,然后将涂覆好的试纸在真空条件下干燥(40℃,30min),干燥完成后即得荧光传感薄膜(荧光试纸);然后将传感薄膜放入吡啶气氛中响应,测试荧光光谱。结果发现,在吡啶气氛中响应后,能观察到非常亮的荧光发射,且做大发射波长发射明显蓝移。除此之外,在其他的voc气氛中,它仍然未发生明显变化。其它多种voc蒸气的存在,于其对吡啶蒸气的荧光传感性能不产生明显影响。这些现象表明该双核碘化亚铜配合物材料对特定voc(吡啶)具有选择性响应传感性能(见图8、图9)。
[0052]
实施例4
[0053]
负载双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的荧光传感薄膜的制备及其气氛响应:称取0.050g配合物发光材料(m-tol3p)2cui2cu(m-tol3p),使其完全溶解在10ml乙腈中,溶液淡黄色澄清透明,过滤。将纤维素薄膜利用裁剪等方法制作成适合应用的大小和形状,作为后续工序中所用的试纸原纸;取适量滤液,将滤液用微喷涂、浸涂或点涂的方法涂覆在试纸原纸上;将涂覆好的试纸在真空条件下干燥(60℃,30min),干燥完成后即得荧光传感薄膜(荧光试纸);然后将传感薄膜放入吡啶气氛中响应,测试荧光光谱。结果发现,在吡啶气氛中响应后,能观察到非常亮的荧光发射,且做大发射波长发射明显蓝移。除此之外,在其他的voc气氛中,它仍然未发生明显变化。其它多种voc蒸气的存在,于其对吡啶蒸气的荧光传感性能不产生明显影响。这些现象表明该双核碘化亚铜配合物材料对特定voc(吡啶)具有选择性响应传感性能(见图8、图9)。
[0054]
实施例5
[0055]
聚合物基掺杂双核碘化亚铜配合物发光材料(m-tol3p)2cui2cu(m-tol3p)的荧光传感薄膜的制备及其气氛响应:称取0.5g的ps(聚苯乙烯)使其完全溶解在10ml二氯甲烷中,溶液无色澄清透明。0.060g配合物发光材料(m-tol3p)2cui2cu(m-tol3p),使其完全溶解在10ml二氯甲烷中,溶液淡黄色澄清透明。将配合物溶液缓慢导入ps溶液中,溶液浅色澄清透明。在处理干净的石英片上旋涂(1200rad/min),干燥(50℃,30min),然后放入吡啶气氛中响应,测试荧光光谱。结果发现,在吡啶气氛中响应后,能观察到非常亮的荧光发射,且做大发射波长发射明显蓝移。除此之外,在其他的voc气氛中,它仍然未发生明显变化。其它多种voc蒸气的存在,于其对吡啶蒸气的荧光传感性能不产生明显影响。这些现象表明该双核碘化亚铜配合物材料对特定voc(吡啶)具有选择性响应传感性能(见图10)。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献