一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

苯腙修饰碳量子点的制备方法

2022-08-03 00:13:01 来源:中国专利 TAG:


1.本发明属于纳米材料制备技术领域,具体涉及一种苯腙修饰碳量子点的制备方法。


背景技术:

2.随着工农业的发展,水体污染越来越严重,目前,规模化治理污水的方法主要有物理吸附法、微生物降解法、絮凝沉淀法、高级氧化法等。高级氧化法是最有效的方法之一,在亚铁离子等催化活化下,使得氧化剂双氧水、单过硫酸氢钾(pms)、臭氧等可以产生具有强氧化能力的羟基自由基(
·
oh)。近来,由于pms具有更强、更高效的氧化能力,逐渐受到更广泛研究。由于亚铁离子等金属盐催化剂会带来二次重金属污染,近年来,研究人员致力于开发非金属催化剂,如活性炭、石墨烯等,来催化活化过氧硫酸盐,如中国专利cn112707495a公开一种利用含氧基团修饰的介孔碳材料活化过硫酸盐去除水体中环丙沙星的方法,中国专利cn110980917a公开一种暗反应条件下石墨相氮化碳活化过硫酸盐降解印染废水的方法,但这类碳材料制备步骤多,不利于大规模生产。
3.在过去的几年中,半导体光催化剂被用来光催化降解有机物,尤其是tio2具有无毒、价低的优点,被研究及应用的最广泛,但由于其可见光利用率低,影响了其效率。量子点由于其强荧光和发射波长易于调节的特点,使其可以考虑用于生物传感和体内成像,而被广泛研究。众所周知,重金属具有高毒性,即使相对较低的浓度,也会对人体造成很大的伤害。然而,半导体量子点由于在生产中需要使用重金属,这使得半导体量子点临床研究具有某些局限性,限制了半导体量子点的使用。2004年xu等在对单壁碳纳米管分离纯化的过程中,首次发现了一种在紫外灯照射下发荧光的碳球状颗粒。2006年sun等第一次给这种发荧光的碳球状颗粒命名为碳量子点(cds)。由于碳量子点无毒、来源丰富和廉价的性质和良好的溶解性和较强的发光能力,使得碳量子点备受关注,已经逐渐成为最重要的碳纳米材料之一。
4.与传统半导体量子点相比,碳量子点除了具有相似的荧光特性外,还具有良好的水溶性、化学惰性、低毒性、生物相容性和低成本的特点,这使它们可以代替半导体量子点,在生物传感器和生物成像领域具有广阔的应用前景。碳量子点既是良好的电子供体也是出色的电子受体,同时具有化学发光、电化学发光和颗粒尺寸小的特性,这使它们在光电催化、光电器件和药物输送等领域也具有巨大的潜力。
5.碳水化合物(乙二醇、柠檬酸、山梨糖醇和蔗糖等)的水热法是获得碳量子点的重要途径。如中国专利cn108384538a公开一种荧光碳量子点的制备方法,山梨糖、乙醇和水通过水热法制备碳量子点;中国专利cn108315012a公开一种碳量子点及其制备方法和应用,葡萄糖、杂多酸和水通过水热法合成荧光碳点。然而,这些合成方法大都需要在高压反应釜下进行长时间的水热反应,不利于低成本、大规模生产。另外,这些传统的制备碳量子点的方法获得的碳量子点都是溶解在水溶液中,反应完成后,还需要透析提纯和冷冻干燥处理后才能得到固体碳量子点。这使得它们的制备工艺复杂且耗时(整个流程需要48h左右),在
过滤和透析等环节会产生大量废水,干燥过程耗能高,且产量偏低,不适合大规模工业生产。如何能快速、廉价的制备固体碳量子点成为行业亟待突破的关键难题。
6.另外,由于cds的能隙较宽,对太阳光波长利用范围较低、光生载流子分离能力较弱、催化活性差等问题,限制了该材料的广泛应用。近年来,随着对掺杂机制的不断深入研究,为解决cds存在的上述问题提供了新的思路和途径。现有研究中,对cds的掺杂大多采用氮元素,一般通过使用含氮的碳源用水热法来制备,并且,制备的氮掺杂碳量子点拥有更好的荧光效应(zhenfang cheng等,chemistryselect,2019,4:2122-2128),但光催化性能微弱,因此,很少提及其光催化性能。如何能促使cds吸收光谱波长向长波方向偏移,提高可见光利用率,同时,提高光生载流子分离能力,从而提升光催化性能,是cds领域重点研究内容。


技术实现要素:

7.本发明的目的是提供一种苯腙修饰碳量子点的制备方法,具有原料价格低廉、制备过程简单便捷、反应条件易于控制、可快速宏量制备具有荧光效应固体碳量子点的优点,并通过用苯肼对碳量子点表面改性后获得苯腙修饰碳量子点(p-cds),在可见光激发下可以活化单过硫酸氢钾,实现快速降解有机染料。
8.本发明所述的苯腙修饰碳量子点的制备方法,包括以下步骤:
9.(1)制备固体碳量子点:
10.将葡萄糖溶于双氧水中,再加入浓硫酸进行热解反应,粉碎,得到固体碳量子点;
11.(2)制备苯腙修饰碳量子点:
12.将固体碳量子点和苯肼加入到水和氯仿的混合溶液中,调节ph值,搅拌反应,萃取,对上层水相溶液进行烘干处理,得到苯腙修饰碳量子点。
13.步骤(1)中所述的葡萄糖与双氧水的质量比为1:1.1-1.5。
14.步骤(1)中所述的浓硫酸的用量为双氧水体积的2-4%。
15.步骤(1)中所述的双氧水的浓度为25-30wt.%,浓硫酸的浓度为95-99.8wt.%。
16.步骤(1)中所述的热解反应的温度为180-190℃,热解反应的时间为10-15min。
17.步骤(1)中所述的热解反应是在鼓风式烘箱中进行热解反应。
18.步骤(2)中所述的碳量子点、苯肼、水和氯仿的配比为10-12:8-10:200-250:200-250,其中,碳量子点以g计,苯肼以g计,水以ml计,氯仿以ml计。
19.步骤(2)中所述的调节ph值是加入盐酸调节ph值,盐酸的浓度为35-38wt.%,水和盐酸的体积比为200-250:0.50-0.80,ph值1.5-2.0。
20.步骤(2)中所述的搅拌反应的温度为20-30℃,搅拌反应的转速为300-500rpm,搅拌反应的时间为6-8h。
21.步骤(2)中所述的萃取是采用萃取液进行萃取,萃取液为氯仿,萃取次数为3-4次,每次萃取中萃取液与水的体积比为200-250:200-250。
22.步骤(2)中所述的烘干温度为70-80℃,烘干时间为8-10h。
23.本发明所述的苯腙修饰碳量子点的制备方法,包括以下具体步骤:
24.(1)制备固体碳量子点:
25.将葡萄糖溶于双氧水中,得到混合液,再将浓硫酸缓慢滴加入混合液中,然后转移
到玻璃培养皿中后,放入已预热的鼓风式烘箱,加热一定时间取出,粉碎即得固体碳量子点;
26.(2)制备苯腙修饰碳量子点:
27.将固体碳量子点和苯肼加入到水和氯仿的混合溶液中,再加入盐酸调节ph值,20-30℃下搅拌反应,反应完毕后用氯仿萃取水相中未反应的苯肼,对上层水相溶液进行烘干处理,得到苯腙修饰碳量子点(p-cds)。
28.步骤(1)中所述的碳量子点的结构式如下:
[0029][0030]
本发明中碳量子点和苯肼反应制备苯腙修饰碳量子点的化学方程式如下:
[0031][0032]
本发明制备得到的p-cds对光的吸收强,在可见光照射下,能有效催化活化单过硫酸氢钾,高效的氧化去除有机染料。本发明的p-cds的制备工艺简单,光催化活化单过硫酸氢钾(pms)去除有机染料效率高,是一种有前景的光催化剂。
[0033]
本发明的有益效果如下:
[0034]
本发明以葡萄糖、双氧水及硫酸为起始原料,采用高温热解的方法快速、大量的制备固体碳量子点,无需采用长时间的水热反应制备碳量子点,且反应完成后无需透析提纯和冷冻干燥处理,原料廉价易得,制备工艺简单。
[0035]
本发明中碳量子点经苯腙修饰后,得到表面官能团丰富、平均粒径为3.0-5.0nm的p-cds;苯腙修饰后,p-cds对紫外、可见光吸收增强,荧光性能降低,说明它是一种光能利用率高、光催化性能好的光催化剂;可见光照射下,p-cds可催化活化pms降解有机物染料,与纯cds相比,p-cds具有用量少、降解有机染料速度快的特点。p-cds在可见光下可以活化pms生成的超氧自由基和空穴,是氧化降解有机染料的主要活性物质。由于该反应在可见光的条件下进行,而不是在紫外线下,这提高了太阳能的利用率。在可见光下,本发明制备的p-cds催化活化pms氧化亚甲基蓝5min去除率达到100%,是单独使用pms氧化亚甲基蓝的去除率的约20倍,是纯cds活化pms氧化亚甲基蓝的去除率的约6倍,因此,p-cds具有较高的光催化活性,是一种有前景的光催化剂。
附图说明
[0036]
图1是实施例1制得的苯腙修饰碳量子点的透射电镜图和颗粒尺寸分布图,其中,左图为苯腙修饰碳量子点的透射电镜图,右图为苯腙修饰碳量子点的颗粒尺寸分布图。
[0037]
图2是实施例1制得的碳量子点和苯腙修饰碳量子点的傅里叶红外吸收光谱图。
[0038]
图3是实施例1制得的碳量子点和苯腙修饰碳量子点的紫外-可见吸收光谱图。
[0039]
图4是实施例1制得的碳量子点和苯腙修饰碳量子点在不同激发光下的发射光谱图。
[0040]
图5是不同体系在暗光和可见光下亚甲基蓝浓度随时间的变化图。
[0041]
图6是实施例1制得的苯腙修饰碳量子点用量对催化pms降解亚甲基蓝的曲线图。
[0042]
图7是亚甲基蓝的浓度与降解速率的关系图。
[0043]
图8是亚甲基蓝溶液ph值与降解速率的关系图。
[0044]
图9是不同体系去除不同有机染料的伪一级速率常数图。
[0045]
图10是在光照下不同自由基清除剂对去除亚甲基蓝的影响曲线图。
具体实施方式
[0046]
以下结合实施例对本发明做进一步描述。
[0047]
实施例1
[0048]
(1)将100g葡萄糖溶于110ml浓度为25wt.%的双氧水中,搅拌均匀,得到混合液,再将3ml浓度为99.8wt.%的浓硫酸缓慢滴加入混合液中,搅拌均匀,然后转移到玻璃培养皿中后,放入已预热至180℃的鼓风式烘箱,加热15min后取出,粉碎即得棕黄色固体碳量子点,产量为85.1g。
[0049]
(2)将10g碳量子点和10g苯肼置于装有250ml水和250ml氯仿的烧杯中,然后加入0.50ml 38wt.%盐酸调节ph值至2.0,并在转速400rpm下,于20℃下搅拌反应8h;静置5min后,每次用250ml氯仿对上层液体进行3次萃取,然后将上层液体在70℃下烘干10h,得到苯腙修饰碳量子点,产量为7.4g。
[0050]
实施例2
[0051]
(1)将100g葡萄糖溶于130ml浓度为30wt.%的双氧水中,搅拌均匀,得到混合液,再将4ml浓度为98.0wt.%的浓硫酸缓慢滴加入混合液中,搅拌均匀,然后转移到玻璃培养皿中后,放入已预热至185℃的鼓风式烘箱,加热13min后取出,粉碎即得棕黄色固体碳量子点,产量为84.5g。
[0052]
(2)将12g碳量子点和8g苯肼置于装有200ml水和230ml氯仿的烧杯中,然后加入0.60ml 38wt.%盐酸调节ph值至1.8,并在转速500rpm下,于30℃下搅拌反应6h;静置5min后,每次用200ml氯仿对上层液体进行4次萃取,然后将上层液体在80℃下烘干8h,得到苯腙修饰碳量子点,产量为8.7g。
[0053]
实施例3
[0054]
(1)将100g葡萄糖溶于120ml浓度为27wt.%的双氧水中,搅拌均匀,得到混合液,再将3.5ml浓度为95.0wt.%的浓硫酸缓慢滴加入混合液中,搅拌均匀,然后转移到玻璃培养皿中后,放入已预热至190℃的鼓风式烘箱,加热10min后取出,粉碎即得棕黄色固体碳量子点,产量为82.9g。
[0055]
(2)将11g碳量子点和9g苯肼置于装有230ml水和200ml氯仿的烧杯中,然后加入0.80ml 37wt.%盐酸调节ph值至1.5,并在转速300rpm下,于25℃下搅拌反应7h;静置5min后,每次用220ml氯仿对上层液体进行4次萃取,然后将上层液体在75℃下烘干9h,得到苯腙修饰碳量子点,产量为8.1g。
[0056]
结果分析:
[0057]
1、用透射电镜对实施例1的产品苯腙修饰碳量子点(p-cds)表观形貌进行了分析,结果见图1,p-cds平均粒径为4.17nm。用红外光谱表征了实施例1制得的cds和p-cds的表面官能团,结果见图2,cds和p-cds表面均有大量-oh、-c=o、-c-o-c等官能团,对比cds和p-cds发现,苯腙修饰后,p-cds比cds多了-nh、-c=n及c-n键,另外p-cds的-c=o键吸收峰变弱,这表示苯肼是通过替代-c=o接枝到cds上。
[0058]
2、测试了实施例1的产品苯腙修饰碳量子点的紫外可见光谱,结果见图3,由图3可以看出p-cds在287和370nm处有明显的吸收峰,这可能分别归因于c=c的官能团的π-π*跃迁和c=o与c=n官能团的n-π*跃迁。对比实施例1制得的cds和p-cds的紫外可见光谱,苯腙修饰后明显提高了碳量子点的紫外和可见光吸收范围和吸收强度,这有利于光催化反应。对实施例1制得的cds和p-cds进行荧光光谱检测,结果如图4所示,cds和p-cds的荧光光谱随着激发波长的增加,两者的反射光谱均有明显的红移现象,并且在360nm激发波长下,表现出一个最大的发射荧光强度。且相比cds,不同激发波长下p-cds的荧光强度明显下降,这表明苯腙修饰后明显提高了cds表面光生电子空穴对的分离效率,这有利于光催化反应。
[0059]
3、在可见光照射下p-cds光催化活化降解有机物测试
[0060]
(1)降解有机物的实验方法如下:
[0061]
将100ml一定浓度的亚甲基蓝(mb)水溶液置于250ml带夹套的烧杯(25℃水浴)中搅拌,向烧杯中加入一定质量的实施例1制备的p-cds,在黑暗条件下搅拌30min,达到吸附平衡;然后加入一定量的单过硫酸氢钾(pms),置于可见光条件下进行降解反应,完成对亚甲基蓝废水的降解,可见光由40w led灯提供,led灯距离反应体系的液面的距离为10-12cm,光密度约为2000w/m2。
[0062]
加入pms后开始记时,分别在0min、1min、5min、10min、20min和30min取样2ml,加入样品瓶中(样品瓶在加入降解液之前,先加入2ml甲醇做灭火剂);将样品瓶中的溶液混匀后经0.22μm针式滤头过滤,滤液采用紫外-可见分光光度计仪器在664nm处测量吸光度。
[0063]
(2)降解有机物结果
[0064]
测试了不同催化剂体系对mb去除率:光催化剂用量为0.2g/l,pms用量为0.0246g/l。图5中左图是无光照下,纯pms、cds、p-cds,及cds/pms混合体系、p-cds/pms混合体系降解mb效果图,图中,[mb]为t时刻亚甲基蓝的浓度,[mb]0为初始亚甲基蓝的浓度,[mb]/[mb]0为t时刻剩余亚甲基蓝百分比含量。结果显示,在黑暗条件下,30min后,纯pms、cds、p-cds的mb去除率分别为16.8%、0.9%、4.9%,这说明纯cds几乎不会降解mb,p-cd去除mb效率非常低。cds/pms和p-cds/pms体系的mb去除率分别为18.2%和30.8%,说明在暗光下,cds与pms混用与纯pms相比只是略微提升了mb的去除率,但p-cds与pms混用与纯pms相比,则可以使mb去除率提升14.0%。图5中右图是可见光光照下,几种体系对mb去除率结果。对比有无光照结果可见,是否光照对纯pms去除mb没有影响,说明可见光不会激活pms。光照会提升纯cds去除mb效率至7.9%,光照也使得cds/pms体系去除mb效率至31.9%,说明光照确实能提升cds的去除mb效率。对于p-cds/pms体系,光照下,在1min内mb去除率就达到了93.7%,5min时已经100%去除完全,这说明苯腙修饰碳量子点具有优异的光催化活性,可极大提升pms活性。
[0065]
测试了p-cds用量对去除mb效率的影响:mb用量为10mg/l,为了测试p-cds对mb的
吸附,暗光时不加pms,经30min吸附平衡后,加pms(用量为0.0246g/l),同时进行光照,测试结果见图6,图中的浓度均为p-cds的浓度。图6显示,随着p-cds浓度的增加,暗光下,mb的去除率没有显著增加(小于10%),但在光照下,随p-cds用量的增加mb的去除率显著提升,当p-cds的剂量为0.2g/l时,mb可在5min内完全清除。
[0066]
测试了初始mb浓度对mb去除率的影响:p-cds用量为0.2g/l,pms用量为0.0246g/l时,mb的浓度为10-50mg/l,测试了mb浓度对去除mb的效率,结果见图7。图7显示,mb去除效率随着初始mb浓度的增加而降低,降解30min时mb的去除率分别从100%减少到95.2%,这是由于随着mb浓度的增加,pms剂量不足,从而降低了mb的去除率。
[0067]
测试了溶液ph值对mb去除率的影响:p-cds的用量为0.1g/l,pms用量为0.0246g/l。如图8所示,随着ph值从5增加到9,降解时间为30min时mb的去除率分别为84.1%、78.6%、71.0%、89.8%和96.2%。结果表明,在酸性介质和碱性介质中均有利于mb的降解,在ph=9.00时mb的去除效率最高,表明碱性条件可以促进p-cds/pms体系中更多活性物质的产生。
[0068]
测试了p-cds/pms在可见光下催化氧化去除其它染料:光催化剂的用量为0.2g/l,pms用量为0.0246g/l,染料用量为10mg/l,结果见图9。有机染料去除伪一级速率常数越高,说明去除率越好。图9显示了去除几种有机染料的伪一级反应速率常数,对比显示,p-cds/pms体系对所有染料均表现出明显增强的去除效果,且p-cds/pms体系对阴离子染料(甲基橙和靛蓝胭脂红)的去除速率远高于对阳离子碱性染料(亚甲基蓝和罗丹明b)的去除速率。
[0069]
4、考察了p-cds/pms体系在可见光下催化降解mb降解机理
[0070]
通过引入各种自由基清除剂用来确定p-cds/pms体系产生的活性氧物种,甲醇(ma)可以与硫酸根自由基(so4·-)和羟基自由基(
·
oh)快速反应,而叔丁醇(tba)可以快速清除体系中的
·
oh。对苯醌(bq)可以选择性的清除体系中的超氧自由基(o2·-),而草酸铵(msds)作为空穴(h

)的清除剂。其中,p-cds用量为0.1g/l,pms用量为0.0246g/l,自由基清除剂用量为0.0246g/l,结果见图10。
[0071]
由图10可见,不加自由基清除剂时(control),60min时mb的去除率达到83.3%,添加叔丁醇(tba)和甲醇(ma)对p-cds/pms体系去除mb的效率仅减少了3-5%,说明添加tba和ma对去除mb仅有很微弱的抑制作用,表明羟基自由基(
·
oh)和硫酸根自由基(so4·-)都不是主要的活性氧化物种(ros)。相反,与不加自由基清除剂(control)相比,添加对苯醌(bq)后,60min时mb去除率显著降低到43.5%,这表明超氧自由基(o2·-)在mb的氧化去除中起到很大作用。草酸铵(msds)可以使得空穴(h

)淬灭,在最初的20min内,草酸铵(msds)的添加在一定程度上抑制了mb的去除,说明该体系也会产生有强氧化能力的空穴(h

),这是因为在可见光下,p-cds产生的光生电子转移给了pms,剩余的空穴(h

)也起到氧化mb的作用;但在60min时,添加msds对mb的去除率并没有减少,这是由于空穴的消耗促使了光生电子-空穴对的分离,促进了光生电子向pms转移,进一步激活了pms,生成了更多活性氧化物种(ros),从而加速了mb的氧化去除。此外,硝酸银(sn)的加入会消耗光生电子,图10显示,加入sn后,p-cds/pms体系在前5min内略微抑制了mb的去除率,但随后mb的去除速度反而加快,这意味着虽然光生电子的猝灭(被硝酸银消耗了)降低了pms的活化,但p-cds上剩余的h

也促进了mb的降解。总之,p-cds光催化活化pms的机制是:p-cds吸收可见光产生光生电子-空穴对,其中,光生电子转移给pms,激活pms产生的o2·-和本身剩余的空穴都是主要的
ros。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献