一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种烧结钕铁硼氧含量的调控制备方法

2022-07-10 12:59:13 来源:中国专利 TAG:


1.本发明涉及磁体制备技术领域,尤其涉及一种烧结钕铁硼氧含量的调控制备方法。


背景技术:

2.稀土永磁钕铁硼是目前为止磁力最强的永久磁体,被广泛应用在空调、汽车、电机等领域。烧结钕铁硼磁体的制备过程涉及粉末冶金过程,并且稀土元素容易氧化,因此,最初时烧结钕铁硼磁体成品中较高的氧含量限制了磁体性能。随着工艺技术和设备的进步,稀土永磁烧结钕铁硼的生产管控水平越来越高,烧结钕铁硼磁体成品的氧含量也从最初的5000ppm降低到了500ppm左右,这促进了烧结钕铁硼磁能积的不断提高。然而,现有研究表明,当烧结钕铁硼磁体的晶界相中存在适量的氧时,能够促进双六方密堆(dhcp)结构的富nd相转变为fcc或bcc的立方晶体结构的nd-o相,该nd-o相与主相晶粒的润湿性好,可以在不提升配方成本的情况下,提高烧结钕铁硼磁体的矫顽力。目前,业内主要采用的补氧工艺为气流磨补氧,即在气流磨制粉的过程中补入一定量的氧气,对粉末进行微钝化的同时,也适量增加了磁体氧含量。然而,气流磨批次间和批次内粗粉的破碎效率不同,气体补氧会随着气流磨效率变化而导致补氧效果不同。在相同的供氧量下,气流磨破碎效率高时,平均氧含量低,破碎效率低时,平均氧含量高。特别是对于气流磨过程中,需分批出料,这导致先分装的粉料氧含量低,后分装的粉料氧含量高,影响了产品批量生产的性能一致性。
3.例如,在中国专利文献上公开的“一种高性能烧结nd-fe-b材料及其制备方法”,其公告号为cn110739113a,按质量百分比计,该nd-fe-b材料由以下化学成分组成:prnd:29.5-31%、ti:0.05-1%、zr:0.05-0.15%、al:0.15-0.7%、ga:0.1-1%、co:0.05-2%、cu:0.08-1.5%、b:0.8-1%,余量为fe。该d-fe-b材料的制备方法包括:原料准备、速凝熔炼、氢破碎、气流磨制粉、取向成型、烧结、热处理,在气流磨制粉阶段,惰性气体中添加一定浓度的氧气。该方法在气流磨制粉阶段补氧,补氧效果波动较大,导致产品的一致性较差。


技术实现要素:

4.本发明为了克服现有技术下难以调控稀土永磁钕铁硼的氧含量,补氧效果波动大,产品的一致性差的问题,提供一种烧结钕铁硼氧含量的调控制备方法,可以灵活调控稀土永磁钕铁硼的氧含量,优化了磁体的性能,并且制得的磁体的一致性好。
5.为了实现上述目的,本发明采用以下技术方案:一种烧结钕铁硼氧含量的调控制备方法,包括如下步骤:a.将钕铁硼磁体原料进行真空熔炼和甩带得到钕铁硼甩带片;b.将钕铁硼甩带片氢破处理得到氢破后粗粉;c.将氢破后粗粉在气流磨中由惰性气体研磨得到钕铁硼细粉;d.向钕铁硼细粉中加入mgo粉末和添加剂,混合后得到混后细粉;e.将混后细粉取向压制和等静压处理得到钕铁硼压坯;
f.将钕铁硼压坯真空烧结、回火后,得到钕铁硼磁体。
6.本发明采用mgo作为氧含量调控剂,在o元素熔入的富nd相的过程中,mg元素通过空隙和晶界扩散到磁体表面,在高温真空环境下挥发被真空系统带走,从而实现在不过量引入其他元素的前提下,对磁体的晶界氧含量进行调控,该方法适用于不同破碎性能的速凝片,以及统一材料不同批次间和批次内的氧含量控制。
7.作为优选,所述步骤a中,钕铁硼磁体原料按质量百分比组成包括pr-nd:31.5%~32.5%;b:0.92%~0.98%;al:0.1%~0.2%;cu:0.25~0.32%;co:0~0.5%;ga:0~0.5%;zr:0~0.15%;余量为fe。
8.作为优选,所述步骤d中,mgo粉末的添加量为钕铁硼细粉质量的0.05~0.25%。
9.磁体的补氧量与mgo粉末的添加量成正相关,而磁体最终的氧含量与磁体磁性能有关,并且mgo添加量较多时,mgo易发生团聚进而影响磁体性能,因此当mgo粉末的添加量为钕铁硼细粉质量的0.05~0.25%时,制备得到的磁体磁性能较好。
10.作为优选,所述步骤d中,mgo粉末的平均粒径为1~3μm。
11.mgo粉末的粒径会影响mgo与钕铁硼细粉的混合均匀性,以及烧结时去除mg元素的难易程度,当残留mg较多时,mg与nd复合使磁体的磁性能下降。
12.作为优选,所述步骤d中,mgo粉末中粒径大于5μm的粉末占比不大于5%。
13.对于单个的mgo粉末颗粒来说,当粒径较大时,烧结后mgo颗粒会残留在磁体内,对磁体的磁性能造成负面影响。
14.作为优选,所述步骤b中,氢破时氢气压力0.01~0.09mpa。
15.作为优选,所述步骤c得到的钕铁硼细粉的粒径为3~5μm。
16.作为优选,所述步骤d中,添加剂包括硬脂酸锌、硬脂酸钙和聚乙二醇辛烷中的一种或多种,添加剂的添加量为钕铁硼细粉质量的0.03~0.05%。
17.作为优选,所述步骤f中,真空烧结温度不低于1050℃,烧结时间不少于6h,真空度不低于1
×
10-3
pa。
18.烧结时钕铁硼压坯的致密度提高,同时mgo中mg元素离开磁体挥发至真空环境中。当烧结温度较低或者烧结时间较短时,导致mg元素不能充分挥发,磁体中残留的mg较多。
19.作为优选,所述步骤f中,回火过程为将真空烧结得到的钕铁硼磁体在800~900℃进行一级热处理2~8h,然后在400~600℃进行二级热处理2~8h。
20.因此,本发明具有如下有益效果:(1)可以灵活实现稀土永磁钕铁硼的氧含量在1000-2000ppm范围内的调控;(2)在不过量增加第二杂质元素的前提下,有效提高了烧结钕铁硼磁体的矫顽力,进一步优化了磁体的性能;(3)提高了制备过程的可控性,使得产品的一致性好。
附图说明
21.图1是实施例1所得烧结钕铁硼磁体的剖面sem图。
22.图2是对比例3所得烧结钕铁硼磁体的剖面sem图。
23.图3是对比例4所得烧结钕铁硼磁体的剖面sem图。
具体实施方式
24.下面结合附图与具体实施方法对本发明做进一步的描述。
25.实施例1~7一种钕铁硼磁体,制备步骤如下:a、钕铁硼磁体原料按质量百分比组成包括pr-nd:32%;b:0.92%;al:0.15%;cu:0.3%;co:0.5%;ga:0.5%;zr:0.15%;余量为fe;将原材料依照熔点从高到低的顺序依次放入坩埚中,通过真空系统对炉内抽真空直到真空度达10-4
pa,露点低于-55℃,通过中频感应线圈进行加热,待原材料完全熔化后调节加热功率保温5分钟,然后按照转动坩埚,使熔融液体经过中间包输送到冷却辊上进行凝固随后掉落到水冷盘上降温得厚度为0.3mm
±
0.05mm的合金片,即钕铁硼甩带片;b、将钕铁硼甩带片放至反应釜中氢破处理,将反应釜抽真空后充入氢气至氢气压力为0.03mpa使吸氢反应开始,当吸氢反应至10分钟内反应釜内部压力变化不超过0.5%时,得到氢破后粗粉,然后通过加热反应釜使氢破后粗粉中吸附的氢气脱出,并通过真空系统将氢气抽离;c、将氢破后的粗粉置于纯净氩气气流磨设备中,通过高速气体带动粗粉相互撞击进行破碎,控制气流磨设备的分选轮和旋风分离器调控粉末颗粒粒径,通过粉末多级筛选装置优化气流磨后的粉末粒径,最终获得粒径为5μm的钕铁硼细粉;d、向钕铁硼细粉中加入mgo粉末和硬脂酸锌,mgo的粒径以及添加量如表1所示,硬脂酸锌的添加量为钕铁硼细粉质量的0.05%,混合后得到混后细粉;e、将混后细粉在取向磁场中模压成型,取向磁场为2.0t,经过取向成型后压坯密度为3.6~4.0g/cm3,再对取向成型后的压坯进行冷等静压,进一步消除压坯内部裂纹,冷等静压后压坯密度》4.5g/cm3,得到钕铁硼压坯;f、将钕铁硼压坯置于烧结炉中,将烧结炉中真空度调为10-3
pa后进行烧结,烧结温度以及烧结时间如表1所示,烧结后的磁体在850℃下热处理进行5h,再在500℃热处理4h,冷却至室温即得到钕铁硼磁体。
26.对比例1一种钕铁硼磁体,制备步骤如下:a、钕铁硼磁体原料按质量百分比组成包括pr-nd:32%;b:0.92%;al:0.15%;cu:0.3%;co:0.5%;ga:0.5%;zr:0.15%;余量为fe;将原材料依照熔点从高到低的顺序依次放入坩埚中,通过真空系统对炉内抽真空直到真空度达10-4
pa,露点低于-55℃,通过中频感应线圈进行加热,待原材料完全熔化后调节加热功率保温5分钟,然后按照转动坩埚,使熔融液体经过中间包输送到冷却辊上进行凝固随后掉落到水冷盘上降温得厚度为0.3mm
±
0.05mm的合金片,即钕铁硼甩带片;b、将钕铁硼甩带片放至反应釜中氢破处理,将反应釜抽真空后充入氢气至氢气压力为0.03mpa使吸氢反应开始,当吸氢反应至10分钟内反应釜内部压力变化不超过0.5%时,得到氢破后粗粉,然后通过加热反应釜使氢破后粗粉中吸附的氢气脱出,并通过真空系统将氢气抽离;c、将氢破后的粗粉置于纯净氩气气流磨设备中,通过高速气体带动粗粉相互撞击进行破碎,控制气流磨设备的分选轮和旋风分离器调控粉末颗粒粒径,通过粉末多级筛选
装置优化气流磨后的粉末粒径,最终获得粒径为5μm的钕铁硼细粉;d、将钕铁硼细粉在取向磁场中模压成型,取向磁场为2.0t,经过取向成型后压坯密度为3.6~4.0g/cm3,再对取向成型后的压坯进行冷等静压,进一步消除压坯内部裂纹,冷等静压后压坯密度》4.5g/cm3,得到钕铁硼压坯;e、将钕铁硼压坯置于烧结炉中,将烧结炉中真空度调为10-3
pa后进行烧结,烧结温度以及烧结时间如表1所示,烧结后的磁体在850℃下热处理进行5h,再在500℃下热处理4h,冷却至室温即得到钕铁硼磁体。
27.对比例2一种钕铁硼磁体,制备步骤如下:a、钕铁硼磁体原料按质量百分比组成包括pr-nd:32%;b:0.92%;al:0.15%;cu:0.3%;co:0.5%;ga:0.5%;zr:0.15%;余量为fe;将原材料依照熔点从高到低的顺序依次放入坩埚中,通过真空系统对炉内抽真空直到真空度达10-4
pa,露点低于-55℃,通过中频感应线圈进行加热,待原材料完全熔化后调节加热功率保温5分钟,然后按照转动坩埚,使熔融液体经过中间包输送到冷却辊上进行凝固随后掉落到水冷盘上降温得厚度为0.3mm
±
0.05mm的合金片,即钕铁硼甩带片;b、将钕铁硼甩带片放至反应釜中氢破处理,将反应釜抽真空后充入氢气至氢气压力为0.03mpa使吸氢反应开始,当吸氢反应至10分钟内反应釜内部压力变化不超过0.5%时,得到氢破后粗粉,然后通过加热反应釜使氢破后粗粉中吸附的氢气脱出,并通过真空系统将氢气抽离;c、将氢破后的粗粉置于氩气气流磨设备中,向研磨气体中混入30ppm的氧气,通过高速气体带动粗粉相互撞击进行破碎,控制气流磨设备的分选轮和旋风分离器调控粉末颗粒粒径,通过粉末多级筛选装置优化气流磨后的粉末粒径,最终获得粒径为5μm的钕铁硼细粉;d、向钕铁硼细粉中加入mgo粉末和硬脂酸锌,mgo的粒径以及添加量如表1所示,硬脂酸锌的添加量为钕铁硼细粉质量的0.05%,混合后得到混后细粉;e、将混后细粉在取向磁场中模压成型,取向磁场为2.0t,经过取向成型后压坯密度为3.6~4.0g/cm3,再对取向成型后的压坯进行冷等静压,进一步消除压坯内部裂纹,冷等静压后压坯密度》4.5g/cm3,得到钕铁硼压坯;f、将钕铁硼压坯置于烧结炉中,将烧结炉中真空度调为10-3
pa后进行烧结,烧结温度以及烧结时间如表1所示,烧结后的磁体在850℃下热处理进行5h,再在500℃热处理4h,冷却至室温即得到钕铁硼磁体。
28.对比例3~6一种钕铁硼磁体,制备步骤同实施例,其中步骤d中mgo的粒径及添加量和步骤f中的烧结温度以及烧结时间如表1所示。
29.表1.实施例1~7以及对比例1~6的制备条件。
30.检测上述实施例及对比例所得磁体的磁性能以及磁体成分。检测过程如下:取实施例及对比例所得磁体,利用线切割加工为ф10*10mm的样品,利用nim16000测试磁体的磁性能,每组试验试制5次,每次取3个样品测试磁性能并求平均值;取实施例及对比例所得磁体,将其破碎后在中心取样,利用icp-oes检测磁体成分,利用氧氮分析仪测试氧含量。检测结果如表2所示。
31.表2.实施例1~7以及对比例1~6的检测结果。
项目br/kgbr标准差/
±
hcj/koehcj标准差/
±
磁体mg含量/wt.%o含量/ppm实施例114.010.0717.50.2未检出713实施例213.990.0917.80.10.003978实施例313.970.1018.10.10.0071498实施例414.020.0817.40.10.0051313实施例513.950.1117.70.20.0061285实施例614.010.0817.60.10.0061269实施例713.990.1217.90.20.0051332对比例114.010.2116.50.4未检出532对比例214.000.2717.20.3未检出1108对比例313.650.5015.70.70.0122310对比例413.360.2316.70.50.0051361对比例513.870.5714.11.10.091357对比例613.850.3615.50.60.0311346
32.使用sem观察实施例1制备的磁体剖面,如图1所示,磁体中晶粒分布均匀,空隙较少。实施例1~7使用了mgo粉末调控稀土永磁钕铁硼中的含氧量,由表2可知,相比于未采用补氧工艺的对比例1,实施例1~7制备的磁体氧含量有所提高,矫顽力有显著提升,并且实施例1~7剩磁和矫顽力的波动性小于对比例1,同时最终得到的磁体mgo含量较低。对比例2采用气流磨补氧,其制备的磁体存在较大的性能波动性,其矫顽力也低于实施例1~7。这表明使用本发明所述烧结钕铁硼氧含量的调控制备方法制备得到的稀土永磁钕铁硼的矫顽力好,产品的均一性佳,引入杂质少。
33.实施例1、实施例2、实施例6以及实施例3中添加的mgo质量依次增加,其最终mgo含
量也依次增加,这表明本发明所述方法的可调控磁体中的氧含量,但矫顽力并不是随氧含量增加而增大,当mgo添加量为钕铁硼细粉质量的2%时,磁体的晶相结构较好,矫顽力大。当氧含量过高时,剩磁和矫顽力明显下降,如对比例3中mgo添加过量,其磁性能显著差于实施例6,使用sem观察对比例3所得磁体的剖面,如图2所示,磁体中氧化物出现团聚现象,影响剩磁和矫顽力。
34.实施例4的磁性能好于实施例5,这表明mgo添加量一定时,较小的mgo平均粒径易在烧结时从磁体中除去,对磁体的矫顽力提升效果更好。对比例4的剩磁和矫顽力均较低,使用sem观察对比例4所得磁体的剖面,如图3所示,磁体中存在mgo大颗粒残留后形成的反磁化形核区域,造成剩磁和矫顽力下降,这是因为对比例4添加的mgo颗粒粒径过大,烧结难以消除。
35.对比例5和对比例6的烧结温度和烧结时间不够,导致mg元素不能在烧结过程中被充分挥发,过量mg易与nd形成软磁性相,导致磁性能劣化。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献