一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

异源合成黄酮类化合物的宿主细胞及其应用

2022-07-10 08:05:36 来源:中国专利 TAG:


1.本发明涉及合成生物学及医药技术领域,具体地,本发明涉及异源合成黄酮类化合物的宿主细胞及其应用。


背景技术:

2.黄芩素和野黄芩素是黄酮类化合物,主要存在于中药黄芩中。这两种活性黄酮仅在黄芩等相关药用植物的根中积累较少。黄芩素和黄芩素都是通过类黄酮生物合成途径合成的。黄芩素和野黄芩素具有抗氧化、抗肿瘤、抗菌、护心等重要生理活性。最近,黄芩素在体外被报道为sars-cov-2 3clpro的抑制剂,显示了中药的巨大潜力。
3.目前,黄酮类化合物的主要来源是从植物中提取和化学合成。然而,由于使用有毒化学物质和极端的反应条件,植物萃取或化学合成无法提供大规模生产的绿色路线。因此,微生物合成黄酮类化合物的研究已经深入开展。由于从植物引入复杂的异质途径,酶的失衡和中间代谢物的积累,通常会导致产物滴度低。为了解决这些问题,采用多变量模块化方法,通过调节启动子强度和质粒拷贝数来合成黄酮类化合物。然而,它是费时的,总是需要大量的工作。之前的工作报道了在工程酵母和大肠杆菌中实现黄芩素和野黄芩素的合成,但黄芩素和野黄芩素的产量仍处于很低水平。
4.建立底物通道是提高酶在体内催化效率的有效途径。利用相互作用蛋白对组装多酶已被证明是提高催化效率的有效方法。脚手架也是增加产品滴度的有效策略,许多不同构象的连接子被开发用于构建各种相互作用蛋白。
5.在本领域中,多种天然产物的合成元件经过组装后实现了在微生物中的异源合成。但是利用生物体内酶组装策略生产黄芩素和野黄芩素这两种活性黄酮类化合物还尚未见报道;从葡萄糖合成黄芩素和野黄芩素的大肠杆菌还尚未见报道。
6.因此,本领域亟待优化能够高效地异源合成黄芩素和野黄芩素或类似化合物的微生物菌株。


技术实现要素:

7.本发明的目的在于提供异源合成黄芩素、野黄芩素类或白杨素类化合物的宿主细胞及其应用。
8.在本发明的第一方面,提供一种用于合成黄芩素、野黄芩素类化合物(如黄芩素或野黄芩素)的原核细胞,其包括外源的下组酶的编码基因:黄酮6-羟化酶(f6h),细胞色素p450氧化还原酶(cpr),苯丙氨酸解氨酶(pal)、4-香豆酸辅酶a连接酶(4cl)、查尔酮合成酶(chs)、查尔酮异构酶(chi)和黄酮合成酶i(fnsi);且所述酶被表达后,苯丙氨酸解氨酶(pal)和4-香豆酸辅酶a连接酶(4cl)构成复合体(复合反应器)。
9.在本发明的另一方面,提供一种用于合成白杨素类化合物(如白杨素或芹菜素)的原核细胞,其包括外源的下组酶的编码基因:苯丙氨酸解氨酶(pal)、4-香豆酸辅酶a连接酶(4cl)、查尔酮合成酶(chs)、查尔酮异构酶(chi)和黄酮合成酶i(fnsi);且所述酶被表达
后,苯丙氨酸解氨酶(pal)和4-香豆酸辅酶a连接酶(4cl)构成复合体(复合反应器)。
10.在一个优选例中,所述的苯丙氨酸解氨酶和4-香豆酸辅酶a连接酶的复合体包括:苯丙氨酸解氨酶和4-香豆酸辅酶a通过蛋白-蛋白相互作用结构域及其配体的结合而靠近,获得复合体。
11.在另一优选例中,所述的苯丙氨酸解氨酶和4-香豆酸辅酶a连接酶直接连接或通过连接子连接、获得融合蛋白形式的复合体。
12.在另一优选例中,所述蛋白-蛋白相互作用结构域包括选自下组的结构域:pdz结构域,sh3结构域,ww结构域,lim结构域,dd结构域,ph结构域,eh结构域,gbd结构域。
13.在另一优选例中,所述蛋白-蛋白相互作用结构域包括pdz结构域,其配体为pdz ligand;所述苯丙氨酸解氨酶和4-香豆酸辅酶a分别与所述pdz结构域及其配体融合;较佳地,所述苯丙氨酸解氨酶与pdz融合、所述4-香豆酸辅酶a与pdz ligand融合;更佳地,所述苯丙氨酸解氨酶与pdz融合时还包括以er/k连接子连接(pal-er/k-pdz),所述4-香豆酸辅酶a与pdz ligand融合时还包括以(ggggs)2连接子连接(pdzlig-(ggggs)
2-4cl)。
14.在另一优选例中,所述蛋白-蛋白相互作用结构域包括sh3结构域,其配体为sh3 ligand;所述苯丙氨酸解氨酶和4-香豆酸辅酶a分别与所述sh3结构域及其配体融合;较佳地,所述苯丙氨酸解氨酶与sh3融合、所述4-香豆酸辅酶a与sh3 ligand融合;更佳地,所述苯丙氨酸解氨酶与sh3融合时还包括以er/k连接子连接(pal-er/k-sh3),所述4-香豆酸辅酶a与sh3 ligand融合时还包括以(ggggs)2连接子连接(sh3lig-(ggggs)
2-4cl)。
15.在另一优选例中,所述苯丙氨酸解氨酶与pdz融合时,所述苯丙氨酸解氨酶位于n端,所述pdz位于c端。
16.在另一优选例中,所述4-香豆酸辅酶a与pdz ligand融合时,所述pdz ligand位于n端,所述4-香豆酸辅酶a位于c端。
17.在另一优选例中,所述苯丙氨酸解氨酶与sh3融合时;所述苯丙氨酸解氨酶位于n端,所述sh3位于c端。
18.在另一优选例中,所述4-香豆酸辅酶a与sh3 ligand融合时,所述sh3 ligand位于n端,所述4-香豆酸辅酶a位于c端。
19.在另一优选例中,所述细胞中还包括外源的促进丙二酰coa生成的酶的编码基因;较佳地,包括matc,matb,acs,fabf。
20.在另一优选例中,所述的原核细胞为大肠杆菌细胞。
21.在另一优选例中,所述细胞中还包括外源的促进苯丙氨酸合成的酶的编码基因;较佳地,包括:arog,phea;更佳地,所述phea为第976位由a突变为c的基因;更佳地,所述arog为第436位由g突变为a的基因。
22.在另一优选例中,所述“促进”为统计学意义的“促进”,例如促进5%以上,10%以上,20%以上,50%以上,80%以上,100%以上或更高。
23.在本发明的另一方面,提供所述的原核细胞的应用,用于合成黄芩素或野黄芩素类化合物。
24.在本发明的另一方面,提供所述的原核细胞的应用,用于合成白杨素类化合物。
25.在本发明的另一方面,提供一种合成黄芩素或野黄芩素类化合物的方法,包括:提供所述的原核细胞(含有f6h和cpr),以式(i)为底物,合成黄芩素或野黄芩素类化合物;
[0026][0027]
其中,r包括h或oh。
[0028]
在本发明的另一方面,提供一种合成白杨素类化合物的方法,包括:提供所述的原核细胞(可不含有f6h和cpr),以式(i)为底物,合成白杨素类化合物。
[0029]
在本发明的另一方面,提供一种合成黄芩素或野黄芩素类化合物或白杨素类化合物的方法,包括:提供所述的原核细胞,以葡萄糖为底物,合成黄芩素或野黄芩素类化合物或白杨素类化合物。
[0030]
在一个优选例中,在引入细胞时,所述pdzligand、4-香豆酸辅酶a连接酶、苯丙氨酸解氨酶、er/k、pdz、黄酮合成酶i、查尔酮合成酶、查尔酮异构酶的编码基因位于一个构建体(质粒)中。
[0031]
在另一优选例中,所述黄酮6-羟化酶,细胞色素p450氧化还原酶的编码基因位于一个构建体中,较佳地还包括2b1(细胞色素p450 2b1家族可溶性蛋白)基因。
[0032]
在另一优选例中,所述matc,matb,acs,fabf的编码基因位于一个构建体中。
[0033]
在另一优选例中,所述sh3lig,4-香豆酸辅酶a连接酶,苯丙氨酸解氨酶,er/k,sh3,查尔酮合成酶的编码基因位于一个构建体中。
[0034]
在另一优选例中,所述查尔酮异构酶,黄酮合成酶i的编码基因位于一个构建体中。
[0035]
在另一优选例中,所述matc、matb、acs、fabf的编码基因,第976位由a突变为c的phea基因(phea
fbr
),第436位由g突变为a的arog基因(arog
fbr
)位于一个构建体中。
[0036]
在本发明的另一方面,提供一种用于生产黄芩素或野黄芩素类化合物(试剂盒中含有f6h和cpr)或白杨素类化合物(试剂盒中可不含有f6h和cpr)的试剂盒,其包括所述的重组的宿主细胞。
[0037]
在本发明的另一方面,提供一种用于建立合成黄芩素或野黄芩素类化合物或白杨素类化合物的宿主细胞的试剂盒,其包括:包含pdzligand、4-香豆酸辅酶a连接酶、苯丙氨酸解氨酶、er/k、pdz、黄酮合成酶i、查尔酮合成酶、查尔酮异构酶的编码基因的构建体;包含matc,matb,acs,fabf的编码基因的构建体;包含sh3lig,4-香豆酸辅酶a连接酶,苯丙氨酸解氨酶,er/k,sh3,查尔酮合成酶的编码基因的构建体;包含查尔酮异构酶,黄酮合成酶i的编码基因的构建体;包含matc、matb、acs、fabf的编码基因,第976位由a突变为c的phea基因(phea
fbr
),第436位由g突变为a的arog基因(arog
fbr
)的构建体;可选地,还包含黄酮6-羟化酶,细胞色素p450氧化还原酶的编码基因的构建体;较佳地所述构建体还包含2b1基因。
[0038]
在一个优选例中,所述的试剂盒中还包括:葡萄糖;或,式(i)底物。
[0039]
本发明的其它方面由于本文的公开内容,对本领域的技术人员而言是显而易见的。
附图说明
[0040]
图1、质粒pzz41的构建示意图。
[0041]
图2、质粒pzz55的构建示意图。
[0042]
图3、非自组装菌株dn-1、自组装菌株dn-2的黄芩素产量的柱形图。
[0043]
图4、非自组装菌株dn-1、自组装菌株dn-2产生的黄芩素的hplc检测图谱。
[0044]
图5、对照菌株dn-3相比,自组装菌株dn-4的黄芩素产量的柱形图。
[0045]
图6、非自组装菌株dn-1、自组装菌株dn-2的野黄芩素产量的柱形图。
[0046]
图7、自组装工程菌株dn-6、非自组装工程菌株dn-5的黄芩素产量的柱形图。
[0047]
图8、以苯丙氨酸为前体,进行发酵生成黄芩素、野黄岑素的合成途径示意图。
[0048]
图9、以葡萄糖为前体,进行发酵生成黄芩素的合成途径示意图。
[0049]
图10、非自组装的菌株jh-0相比与自组装菌株dn-0的白杨素产量比较。
具体实施方式
[0050]
本发明人经过深入的研究,提供了新型的黄芩素或野黄芩素类化合物/白杨素类化合物生物合成的优化改造,可实现以原核生物为底盘利用酶自组装技术合成黄芩素或野黄芩素类化合物/白杨素类化合物,以及实现利用葡萄糖从头合成黄芩素或野黄芩类化合物/白杨素类化合物。本发明也揭示了优化改造后的宿主细胞及其应用。
[0051]
如本文所用,“外源的”或“异源的”是指来自不同来源的两条或多条核酸或蛋白质序列之间的关系。
[0052]
如本文所用,所述的“可操作地连接(相连)”或“操作性连接(相连)”是指两个或多个核酸区域或核酸序列的功能性的空间排列。例如:启动子区被置于相对于目的基因核酸序列的特定位置,使得核酸序列的转录受到该启动子区域的引导,从而,启动子区域被“可操作地连接”到该核酸序列上。
[0053]
如本文所用,所述的“表达构建物”是指重组dna分子,它包含预期的核酸编码序列,其可以包含一个或多个基因表达盒。所述的“构建物”通常被包含在表达载体中。
[0054]
如本文所用,所述的pal、4cl、chs、chi和fnsi蛋白是在表达系统中形成白杨素或芹菜素合成途径的蛋白。
[0055]
如本文所用,所述的f6h和cpr蛋白是在表达系统中转化白杨素或芹菜素、生成黄芩素或野黄芩素类化合物的蛋白。
[0056]
如本文所用,所述的matc、matb、acs和/或fabf蛋白在表达系统中促进丙二酰coa生成的酶。
[0057]
如本文所用,所述的arog或其突变体,phea或其突变体在表达系统中促进苯丙氨酸合成。
[0058]
野生型的上述蛋白或基因为本领域已经鉴定的,因此,可以从公众途径获得和制备。作为本发明的优选方式,pal来源于红景天(rhodotorula toruloides),其具有genbank登录号aaa33883.1所示的序列;4cl来源于欧芹(petroselium crispum),其具有genbank登录号kf765780.1所示的序列;chs来源于矮牵牛(petunia x hybrida),其具有genbank登录号kf765781.1所示的序列;chi基因来源于苜蓿(medicago sativa),其具有genbank登录号kf765782.1所示的序列;fnsi来源于欧芹(petroselium crispum),其具有swiss-prot登录号q7xzq8.1所示的序列。
[0059]
野生型的f6h和cpr也是本领域已经鉴定的。作为本发明的优选方式,f6h来源于黄
岑(scutellaria baicalensis),其具有genbank登录号asw21050.1所示的序列。作为本发明的优选方式,cpr来自于拟南芥(arabidopsis thaliana),其具有genbank登录号np_849472.2所示的序列。
[0060]
野生型的matc、matb、acs、fabf蛋白也是本领域已经鉴定的。作为本发明的优选方式,matc来源于豆科根瘤菌(rhizobium leguminosarum),其具有genbank登录号kf765784.1所示的序列;matb来源于豆科根瘤菌(rhizobium leguminosarum),其具有genbank登录号agz04579.1所示的序列;acs来源于大肠杆菌(escherichia coli),其具有genbank登录号cp062211.1所示的序列;fabf来源于大肠杆菌(escherichia coli),其具有genbank登录号ap023237.1所示的序列。
[0061]
黄芩素和野黄芩素是二个结构相似且重要的黄酮类化合物。黄芩素的分子式为c
15h10
o5,分子量为270.24,而野黄芩素的分子量为c
15h10
o6,分子量为286.24。它们的结构如下所示:
[0062][0063]
本发明人发现,利用宿主细胞生产黄芩素、野黄岑素类化合物(如黄芩素或野黄芩素)或其前体白杨素类化合物(如白杨素或芹菜素)的过程中,仍然存在产物含量不够高的情形,因此对多个参与反应的蛋白进行了分析,经过大量筛选和实验,获得了一种优选的改造方案,极为显著地提高了微生物,尤其是原核表达系统(原核细胞)如大肠杆菌中化合物的产量。
[0064]
作为本发明的改造方案的一个方面,本发明人利用酶组装技术发酵生产黄芩素或野黄芩素。该方案的原理为:利用相互作用的蛋白对(例如pdz和pdz ligand)与黄芩素合成途径中的酶pal和4cl进行融合,使pal和4cl能够在大肠杆菌体内进行自发组装,形成双酶复合反应器,从而提目标化合物的产量。
[0065]
本发明人首次在合成黄岑类化合物/白杨素类化合物的原核表达系统中发现将pal与4cl构建成复合体(复合反应器),可极为有效地提高表达系统的产量。适用于使得pal与4cl构成有活性的复合体的任何生物材料或技术手段可被应用于本发明中。作为本发明的优选方式,所述的蛋白-蛋白相互作用结构域可包括选自下组的结构域:pdz结构域,sh3结构域,ww结构域,lim结构域,dd结构域,ph结构域,eh结构域。作为本发明的更优选的方式,所述的蛋白-蛋白相互作用结构域可包括选自下组的结构域:pdz结构域,sh3结构域;它们的相应的配体为pdz ligand(pdzlig)或sh3 ligand(sh3lig)。
[0066]
蛋白质-蛋白质相互作用主要由蛋白质结构域来高效介导。pdz、sh3、ww等结构域可通过一个或多个识别“口袋”来识别和结合配体蛋白的一段保守的短肽序列。就pdz结构域而言,它通常结合配体蛋白c末端4-5个氨基酸残基,其也能够结合配体蛋白的中间序列,与自身或其他结构域聚合,或与膜上的脂类结合。
[0067]
本发明中,也可包括其它的将pal与4cl构成复合体、且能保留所述pal与4cl的生物学活性的方法,例如将它们进行融合,构成具有适合的空间结构的融合蛋白;可通过实验
测试来确定融合蛋白的活性。pal与4cl之间的融合可以是直接连接,也可以利用连接子(linker)来进行连接。
[0068]
作为本发明的改造方案的另一个方面,本发明人在原核表达系统中过表达arog、特别是其arog
fbr
,以及phea、特别是其phea
fbr
基因,构建获得高产苯丙氨酸原核表达系统,在该原核表达系统中引入外源的黄芩素或野黄芩素类化合物/白杨素类化合物合成途径,使该菌株能够利用葡萄糖从头合成黄芩素化合物/白杨素类化合物。
[0069]
常用的原核表达系统包括大肠杆菌、枯草杆菌等;例如可为大肠杆菌细胞(e.coli),如大肠杆菌bl21(de3)。
[0070]
在上述优选的蛋白(包括上述野生型的蛋白,突变型的蛋白)的基础上,本发明还包括它们的类似物。这些类似物与天然蛋白的差别可以是氨基酸序列上的差异,也可以是不影响序列的修饰形式上的差异,或者兼而有之。这些蛋白包括天然或诱导的遗传变异体。诱导变异体可以通过各种技术得到,如通过辐射或暴露于诱变剂而产生随机诱变,还可通过定点诱变法或其他已知分子生物学的技术。类似物还包括具有不同于天然l-氨基酸的残基(如d-氨基酸)的类似物,以及具有非天然存在的或合成的氨基酸(如β、γ-氨基酸)的类似物。应理解,本发明的蛋白并不限于上述例举的代表性的蛋白。
[0071]
在上述优选的蛋白(包括上述野生型的蛋白,突变型的蛋白)的基础上,本发明还包括与所述的蛋白同源性高(比如与所列举的具体蛋白序列的同源性为70%或更高;优选地同源性为80%或更高;更优选地同源性为90%或更高,如同源性95%,98%或99%)的、且具有相应多肽相同功能的蛋白也包括在本发明内。
[0072]
本发明中列举了来自特定物种的蛋白或基因。应理解,虽然本发明中优选研究了获自特定物种的蛋白或基因,但是获自其它物种的与所述蛋白或基因高度同源(如具有60%以上,如70%,80%,85%、90%、95%、甚至98%序列相同性)的其它蛋白或基因也在本发明考虑的范围之内。
[0073]
发明还涉及本发明还提供了编码本发明的蛋白或其保守性变异蛋白的多核苷酸序列。本发明的多核苷酸可以是dna形式或rna形式。dna形式包括cdna、基因组dna或人工合成的dna。dna可以是单链的或是双链的。dna可以是编码链或非编码链。编码本发明的突变体成熟蛋白的多核苷酸包括:只编码成熟蛋白的编码序列;成熟蛋白的编码序列和各种附加编码序列;成熟蛋白的编码序列(和任选的附加编码序列)以及非编码序列。
[0074]
本发明还包括针对所述基因的序列,进行密码子优化后形成的多核苷酸序列,例如,根据宿主细胞的偏好进行密码子优化。
[0075]
本发明中,还构建了高产黄芩素或野黄芩素类化合物的工程菌株,其中包括外源的下组酶的编码基因:f6h,cpr,pal、4cl、chs、chi和fnsi;且所述酶被表达后,pal和4cl构成复合体(复合反应器)。培养该重组菌株,并以苯丙氨酸或酪氨酸为底物,生产黄芩素或野黄芩素类化合物。以苯丙氨酸或酪氨酸为底物的生产,适合于规模化的化合物生产。
[0076]
本发明中,还构建了高产白杨素类化合物的工程菌株,其中包括外源的下组酶的编码基因:pal、4cl、chs、chi和fnsi;且所述酶被表达后,pal和4cl构成复合体(复合反应器)。培养该重组菌株,并以苯丙氨酸或酪氨酸为底物,生产黄芩素或野黄芩素类化合物。以苯丙氨酸或酪氨酸为底物的生产,适合于规模化的化合物生产。
[0077]
为本发明的优选方式,所述f6h还包括与之融合的多肽标签,所述的多肽标签例如
选自:8rp,sumo,mbp,2b1,或它们的组合;较佳地为2b1。所述的多肽标签与所述f6h之间,可以包含或不包含连接肽,所述的连接肽不影响两者的生物学活性。f6h于2b1连接,可获得一种改进的f6h突变体2b1trf6h。
[0078]
还可以在上述的工程菌株中,进一步引入上述底物(苯丙氨酸或酪氨酸)的上游生成途径,例如包括:由葡萄糖或甘油通过糖酵解、磷酸戊糖途径、莽草酸途径生成苯丙氨酸或酪氨酸。应理解,基于此类途径来形成苯丙氨酸或酪氨酸的方案也包含在本发明中。通过本领域已知手段来加强所述形成苯丙氨酸或酪氨酸途径的方法可包含在本发明中。
[0079]
作为一种优选方式,可以在上述以苯丙氨酸或酪氨酸为底物的工程菌株中,进一步引入外源的arog、特别是其arog
fbr
,以及phea、特别是其phea
fbr
,获得另一种重组菌株,该菌株能够以葡萄糖为底物,生产黄芩素类化合物/白杨素类化合物。以葡萄糖为底物的生产,成本低廉,非常适合于规模化的化合物生产。
[0080]
在建立如本发明优化的表达系统以及利用其进行生产的基础上,本领域人员还可系统研提高黄芩素、野黄芩素类化合物或白杨素类化合物产量的一系列因素,包括基因的效率和适宜性、基因剂量和培养基。此外,也可通过扩大生产规模来提高目标化合物的产量。例如,在摇瓶规模、简单培养条件下的产量基础上,当进一步扩大生产规模、进行培养基流加方案(可以源源不断提供充沛的底物)或给予良好的发酵罐水平生产条件(如温度的优化控制、溶氧的优化控制等)时,其产量通常可增加2~1000倍。这些操作和优化方式也应被包含在本发明中。可以预期,本发明的重组原核细胞,在一些优化的设备和操作工艺中,目标产物的量会发生长足的增长。
[0081]
在获得了发酵产物后,从发酵产物中提取目标化合物可以采用本领域已知的技术。可以采用一些公知技术如高效液相色谱来对产物进行分析鉴定,以确定获得了所需的化合物。
[0082]
本发明的菌株稳定性好,并可实现在生物反应器中规模性培养及生产黄芩素或野黄芩素类化合物/白杨素类化合物。本发明优选的菌株的目标化合物得率非常高。
[0083]
相对于传统的植物提取手段,微生物发酵具有速度快、受外界因素影响较小等优势;部分化合物通过微生物合成的产量远高于植物提取,已经成为天然产物获得的一种重要手段。本发明中,通过大肠杆菌生产黄芩素或野黄芩素类化合物/白杨素类化合物,实现目标化合物更经济、更方便的制造。
[0084]
本发明还提供了用于生产黄芩素或野黄芩素类化合物工程菌株的试剂盒。此外,其中还可包括原核细胞的培养基,用于合成的底物如苯丙氨酸、酪氨酸或葡萄糖,黄芩素或野黄芩素类化合物分离或检测试剂。更佳地,所述试剂盒中还可包括说明进行生物合成黄层素的方法的使用说明书等。
[0085]
本发明还提供了用于构建所述生产黄芩素或野黄芩素类化合物/白杨素类化合物,工程菌株的试剂盒,所述试剂盒中可包括一系列构建体,例如可参考本发明的实施例中所提供的构建体,也可以为含有所述基因但基因排列或串联方式不同的其它构建体。表达载体(表达构建物)的建立可以采用本领域技术人员熟悉的技术。在得知了所需选择的酶以及所需表达的细胞体系之后,本领域技术人员可以进行表达构建物的建立。基因序列可以被插入到不同的表达构建物(如表达载体)中,也可以被插入到同一表达构建物中,只要在转入到细胞后其编码的多肽能够被有效地表达和发挥活性即可。所述试剂盒中还可包括原
核细胞,原核细胞的培养基,用于合成的底物如苯丙氨酸、酪氨酸或葡萄糖,黄芩素或野黄芩素类化合物分离或检测试剂。更佳地,所述试剂盒中还可包括说明进行生物合成黄芩素或野黄芩素的方法的使用说明书等。
[0086]
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如j.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。
[0087]
1.实验材料
[0088]
多聚酶链式反应(pcr)胶回收试剂盒,质粒抽提试剂盒均为美国axygen产品;聚合酶链式反应(pcr)高保真酶primestar max dna polymerase为日本宝生物公司(takara)产品;限制性内切酶均为neb产品。
[0089]
标准品化合物黄芩素和野黄芩素购自上海源叶生物科技有限公司。其他试剂为国产分析纯或色谱纯试剂,购自国药集团化学试剂有限公司。
[0090]
pcr使用arktik thermal cycler(thermo fisher scientific);恒温培养使用zxgp-a2050恒温培养箱和zwy-211g恒温培养振荡器;离心使用5418r高速冷冻式离心机和5418小型离心机(eppendorf)。真空浓缩使用concentrator plus浓缩仪(eppendorf);od600使用uv-1200紫外可见分光光度计检测(上海美谱达仪器有限公司)。旋转蒸发系统由ika rv 10digital旋转蒸发仪(ika)和mz 2c nt化学隔膜泵、cvc3000真空控制器(vacuubrand)组成。高效液相色谱使用dionex ultimate 3000液相色谱系统(thermo fisher scientific)。
[0091]
2、本发明所涉及的菌株及质粒
[0092]
大肠杆菌dh10b用于基因克隆,大肠杆菌bl21(de3)菌株用于蛋白表达和黄芩素、野黄芩素的生产。
[0093]
pcdfduet-1、petduet-1、pacycduet-1载体用于代谢途径基因装配。
[0094]
5nm rigid linker er/k序列:kaklkeeeerkqreeeerikrleelakrkeeerkgt。
[0095]
3、酶的选择
[0096]
野生型的上述蛋白或基因均为本领域已经鉴定的,因此,可以从公众途径获得和制备,具体如下:
[0097]
pal:来源于红景天(rhodotorula toruloides),其具有genbank登录号aaa33883.1所示的序列(rtpal);
[0098]
4cl:来源于欧芹(petroselium crispum),其具有genbank登录号kf765780.1所示的序列(pc4cl);
[0099]
chs:来源于矮牵牛(petunia x hybrida),其具有genbank登录号kf765781.1所示的序列;
[0100]
chi基因:来源于苜蓿(medicago sativa),其具有genbank登录号kf765782.1所示的序列;
[0101]
fns i:来源于欧芹(petroselium crispum),其具有swiss-prot登录号q7xzq8.1所示的序列;
[0102]
f6h:来源于黄岑(scutellaria baicalensis),其具有genbank登录号asw21050.1
所示的序列;
[0103]
cpr:来自于拟南芥(arabidopsis thaliana),其具有genbank登录号np_849472.2所示的序列。
[0104]
pdz结构域:来自于小鼠mouseα-syntrophin(syn),77-171氨基酸序列,其具有genbank登录号edl06069所示的序列。
[0105]
matb基因:来源于豆科根瘤菌(rhizobium leguminosarum),其具有genbank登录号agz04579.1所示的序列。
[0106]
matc基因:来源于豆科根瘤菌(rhizobium leguminosarum),其具有genbank登录号kf765784.1所示的序列。
[0107]
acs基因:来源于大肠杆菌(escherichia coli),其具有genbank登录号cp062211.1所示的序列。
[0108]
pdz ligand:序列为gvkeslv(seq id no:12)。
[0109]
sh3结构域:aeyvralfdfngndeedlpfkkgdilrirdkpeeqwwnaedsegkrgmipvpyveky(seq id no:13)。
[0110]
sh3lig:pppalppkrrr(seq id no:14)。
[0111]
4、质粒的构建
[0112]
构建含单个基因的质粒
[0113]
(1)pal和pdz的融合蛋白质粒的构建
[0114]
首先在pal基因n端增加ncoi酶切位点,pdz序列c端增加ecori酶切位点,利用over-lap pcr方法将pal,5nm rigid linker er/k,pdz进行基因融合,载体骨架选择pcdfduet-1,将over-lap pcr后得到的融合基因pal-er/k-pdz连接到pcdfduet-1的ncoi和ecori位点,得到pcdfduet1-t7 pal-er/k-pdz。
[0115]
(2)4cl和pdz ligand的融合蛋白质粒的构建
[0116]
将pdz ligand序列设计在上游引物中,n端增加ncoi酶切位点,4cl序列c端增加bamhi酶切位点,pcr得到pdzlig-4cl融合基因,将融合基因构建到pcdfduet-1的ncoi和bamhi位点,得到pcdfduet1-t7 pdzlig-4cl。
[0117]
(3)4cl和pdz ligand的融合蛋白质粒的构建
[0118]
将pdz ligand序列设计在下游引物中,4cl n端增加ncoi酶切位点,pdz ligand c端增加bamhi酶切位点,pcr得到4cl-pdzlig融合基因,将融合基因构建到pcdfduet-1的ncoi和bamhi位点,得到pcdfduet1-t7 4cl-pdzlig。
[0119]
(4)phea基因从bl21(de3)基因组克隆得到,在phea基因n端增加ncoi酶切位点,c端增加bamhi酶切位点。利用pcr引物,将phea基因的976位由a突变为c得到phea
fbr
,载体骨架选择petduet-1,将phea
fbr
基因连接到pcdfduet-1的ncoi和bamhi位点,得到pcdfduet1-t7 phea
fbr

[0120]
(5)arog基因从bl21(de3)基因组克隆得到,在arog基因n端增加ncoi酶切位点,c端增加bamhi酶切位点。利用pcr引物,将arog基因的436位由g突变为a得到arog
fbr
,载体骨架选择petduet-1,将arog
fbr
基因连接到pcdfduet-1的ncoi和bamhi位点,得到pcdfduet1-t7 arog
fbr

[0121]
5、构建携带多基因的质粒
[0122]
pyh57(pcdfduet1-t74cl-t7pal-t7fnsi-t7chs-t7chi)的建立:参见引用文献1:production of plant-specific flavones baicalein and scutellarein in an engineered e.coli from available phenylalanine and tyrosine。
[0123]
pyh66(petduet1-t72b1trf6h-t7cpr)的建立:参见引用文献1:production of plant-specific flavones baicalein and scutellarein in an engineered e.coli from available phenylalanine and tyrosine。
[0124]
pyh38(pacycduet1-t7matc-t7matb-t7acs-t7fabf)的建立:利用pcr得到matc基因和matb基因;在matc基因n端加上ncoi酶切位点,c端加上hindiii酶切位点,将matc基因连到pacycduet1的ncoi和hindiii位点(该位点前具有载体自带的t7启动子),获得t7matc。在t7matc基因位点n端加上hindiii位点,c端加上acc65i位点,利用pcr得到t7matc基因,将t7matc基因连到pacycduet1的hindiii和acc65i位点。在t7acs基因n端加上acc65i位点,c端加上noti位点,利用pcr得到t7acs基因,将t7acs基因连接到pacycduet1的acc65i和noti位点。在t7fabf基因的n端加上noti位点,在c端加上xbai位点,pcr得到t7 fabf基因,将t7fabf基因连接到pacycduet1的noti和xbai位点。得到pacycduet1-t7matc-t7matb-t7acs-t7fabf质粒。
[0125]
pzz12(pcdfduet1-t7-chi-fnsi)的建立:在chi基因n端加上ncoi位点,c端加上hindiii位点,pcr得到chi基因,将chi基因连接到pcdfduet1的ncoi和hindiii位点。在fnsi基因n端加上hindiii位点,c端加上ecori位点,pcr得到fnsi基因,连接到pcdfduet1的hindiii和ecori位点。得到pcdfduet1-t7-chi-fnsi。
[0126]
pzz22(pet28a-sh3lig-t7-4cl-pal-er/k-sh3-chs)的建立:在sh3lig基因n端加上ncoi位点,4cl基因c端加上bamhi位点,以pet28a为载体,利用over-lap pcr将sh3lig和4cl融合得到融合基因sh3lig-4cl,将sh3lig-4cl连接到pet28a的ncoi和bamhi位点。over-lap pcr得到融合基因pal-er/k,在pal-er/k基因n端加上bamhi位点,sh3基因c端加上ecori位点,利用over-lap pcr将pal-er/k基因和sh3基因融合,得到pal-er/k-sh3基因,将pal-er/k-sh3连接到pet28a的bamhi和ecori位点。在chs基因n端加上ecori位点,c端加上sali位点,将chs连接到pet28a的ecori和sali位点。得到质粒pzz22(pet28a-sh3lig-t7-4cl-pal-er/k-sh3-chs)。
[0127]
pzz23(pet28a-t7-4cl-pal-er/k-sh3-chs)的建立:在4cl基因n端加上ncoi位点,4cl基因c端加上bamhi位点,以pet28a为载体,将4cl连接到pet28a的ncoi和bamhi位点。在pal-er/k基因n端加上bamhi位点,sh3基因c端加上ecori位点,利用over-lap pcr将pal-er/k基因和sh3基因融合,得到pal-er/k-sh3基因,将pal-er/k-sh3连接到pet28a的bamhi和ecori位点。在chs基因n端加上ecori位点,c端加上sali位点,将chs连接到pet28a的ecori和sali位点。得到质粒pzz23(pet28a-t7-4cl-pal-er/k-sh3-chs)。
[0128]
pzz41(pcdfduet1-t7pdzlig-4cl-t7pal-er/k-pdz-t7fnsi-t7chs-t7chi)的建立:将4(1)中构建的pal-er/k-pdz融合基因n端增加bamhi酶切位点,c端增加ecori酶切位点,插入到pcdfduet1中,获得pcdfduet1-t7pal-er/k-pdz。以pcdfduet1-t7pal-er/k-pdz为模板,pcr后将基因pal-er/k-pdz构建到pcdfduet1-t7pdzlig-4cl质粒的bamhi和ecori位点,得到pcdfduet1-t7pdzlig-4cl-t7pal-er/k-pdz。将t7fnsi-t7chs-t7chi基因利用hindiii和avrii双酶切从pyh57质粒上酶切下来,连接到上述质粒的hindiii和avrii酶切
位点得到pzz41(pcdfduet1-t7pdzlig-4cl-t7pal-er/k-pdz-t7fnsi-t7chs-t7chi)质粒。
[0129]
pzz52(petduet1-t7phea
fbr-t7arog
fbr
)的建立:在pcdfduet1-t7 arog
fbr
质粒t7启动子前设计引物,增加bamhi酶切位点,c端增加ecori酶切位点,以petduet1-t7arog
fbr
为模板,pcr得到t7arog
fbr
片段,将该片段连接到pcdfduet1-t7phea
fbr
质粒的bamhi和ecori位点,得到pzz52(petduet1-t7phea
fbr-t7arog
fbr
)质粒。
[0130]
pzz55(pacycduet1-t7matc-t7matb-t7acs-t7fabf-t7phea
fbr-t7arog
fbr
)的建立:以pzz52(petduet1-t7phea
fbr-t7arog
fbr
)质粒为模板,t7启动子上游设计引物增加avrii质粒,在c端增加avrii酶切位点,pcr克隆得到t7phea
fbr-t7arog
fbr
片段,利用一步克隆试剂盒将t7phea
fbr-t7arog
fbr
连接到pyh38(pacycduet1-t7matc-t7matb-t7acs-t7fabf)的avrii位点,得到pzz55(pacycduet1-t7matc-t7matb-t7acs-t7fabf-t7phea
fbr-t7arog
fbr
)质粒。
[0131]
质粒详细信息见表1,细胞信息见表2,质粒构建示意图见图1~图2。
[0132]
表1
[0133][0134]
表2
[0135][0136][0137]
5、大肠杆菌摇瓶发酵黄芩素和野黄芩素
[0138]
发酵菌株的准备:构建好的质粒转化大肠杆菌bl21(de3),37℃倒置培养12h后挑阳性克隆于2ml lb抗性的培养基中,37℃,250rpm培养10h制备发酵种子菌,发酵工程菌的详细信息见表2。
[0139]
种子液1%转接至10ml含2%葡萄糖的m9培养基中(培养基中加入相应的抗生素),37℃,250rpm培养至菌株od=0.5,加入0.1mm的iptg及500mg/l的苯丙氨酸,22℃,220rpm发酵3天,取样1ml,菌液超声破碎3次,等体积乙酸乙酯混匀萃取两次,12000rpm,2min离心转移有机相至新管,室温或30℃旋转蒸干后,加200μl甲醇复溶(浓缩5倍)充分混匀,12000rpm,2min后转移上清hplc检测。
[0140]
6、hplc检测
[0141]
液相检测条件:a相:0.1%甲酸水,b相:乙腈;分离条件:0-20min 20%b相-55%b相,20-22min 55%b相-100%b相,22-27min 100%b相,27-35min 100%b相-20%b相,35-40min,20%b相;检测波长:340nm,柱温:30℃。
[0142]
色谱柱:thermo syncronis c18反相柱(250mm
×
4.6mm,5μm)。
[0143]
实施例
[0144]
实施例1、蛋白的优化改造
[0145]
1、pal蛋白序列的优化改造
[0146]
来自红景天(rhodotorula toruloides)的pal(rtpal)长度为693aa(genbank登录号aaa33883.1),具体序列如下(seq id no:1):
[0147]
maprptsqsqartcpttqvtqvdivekmlaaptdstleldgyslnlgdvvsaarkgrpvrvkdsdeirskidksveflrsqlsmsvygvttgfggsadtrtedaislqkallehqlcgvlpssfdsfrlgrglenslplevvrgamtirvnsltrghsavrlvvlealtnflnhgitpivplrgtisasgdlsplsyiaaaisghpdskvhvvhegkekilyareamalfnlepvvlgpkeglglvngtavsasmatlalhdahmlsllsqsltamtveamvghagsfhpflhdvtrphptqievagnirkllegsrfavhheeevkvkddegilrqdryplrtspqwlgplvsdlihahavltieagqsttdnplidvenktshhggnfqaaavantmektrlglaqigklnftqltemlnagmnrglpsclaaedpslsyhckgldiaaaaytselghlanpvtthvqpaemanqavnslalisarrttesndvlslllathlycvlqaidlraiefefkkqfgpaivslidqhfgsamtgsnlrdelvekvnktlakrleqtnsydlvprwhdafsfaagtvvevlsstslslaavnawkvaaaesaisltrqvretfwsaastsspalsylsprtqilyafvreelgvkarrgdvflgkqevtigsnvskiyeaiksgrinnvllkmla*
[0148]
改造1:本发明人针对seq id no:1进行序列改造,氨基酸,在c端加上5nm rigid linker er/k连接子,获得改进的pal突变体pal-er/k,具体序列如下(seq id no:2):
[0149][0150]
改造2:本发明人针对seq id no:2进行序列改造,再在c端加上pdz的氨基酸序列,获得改进的pal-er/k突变体pal-er/k-pdz,具体序列如下(seq id no:3):
[0151][0152][0153]
其中,pal位于seq id no:3的第1~693位;er/k位于seq id no:3的第694~729位;pdz位于seq id no:3的第730~824位。
[0154]
改造3:本发明人针对seq id no:2进行序列改造,再在c端加上sh3的氨基酸序列,
获得改进的pal-er/k突变体pal-er/k-sh3,具体序列如下(seq id no:4):
[0155][0156]
其中,pal位于seq id no:4的第1~693位;er/k位于seq id no:3的第694~729位;pdz位于seq id no:3的第730~786位。
[0157]
2、4cl蛋白序列的优化改造
[0158]
来自欧芹(petroselium crispum)的4cl(pc4cl)长度为544aa(genbank登录号kf765780.1),具体序列如下(seq id no:5):
[0159]
mgdcvapkedlifrsklpdiyipkhlplhtycfeniskvgdksclingatgetftysqvellsrkvasglnklgiqqgdtimlllpnspeyffaflgasyrgaistmanpfftsaevikqlkasqakliitqacyvdkvkdyaaekniqiiciddapqdclhfsklmeadesempevvinsddvvalpyssgttglpkgvmlthkglvtsvaqqvdgdnpnlymhsedvmicilplfhiyslnavlccglragvtilimqkfdivpfleliqkykvtigpfvppivlaiakspvvdkydlssvrtvmsgaaplgkeledavrakfpnaklgqgygmteagpvlamclafakepyeiksgacgtvvrnaemkivdpetnaslprnqrgeicirgdqimkgylndpestrttideegwlhtgdigfiddddelfivdrlkeiikykgfqvapaelealllthptisdaavvpmidekagevpvafvvrtngfttteeeikqfvskqvvfykrifrvffvdaipkspsgkilrkdlrariasgdlpk*
[0160]
改造1:本发明人针对seq id no:5进行序列改造,去除其中第1位氨基酸,再在n端加上(ggggs)2的氨基酸序列,获得改进的4cl突变体(ggggs)
2-4cl,具体序列如下(seq id no:6):
[0161][0162]
改造2:本发明人针对seq id no:6进行序列改造,再在n端加上pdzlig的氨基酸序列,再n端加上m氨基酸,获得改进的(ggggs)
2-4cl突变体pdzlig-(ggggs)
2-4cl,具体序列如下(seq id no:7):
[0163][0164]
其中,pdzlig位于seq id no:7的第1~8位;(ggggs)2位于seq id no:7的第9~18位;4cl位于seq id no:7的第19~561位。
[0165]
改造3:本发明人针对seq id no:5进行序列改造,在c端加上(ggggs)2的氨基酸序列,获得改进的4cl突变体4cl-(ggggs)2,具体序列如下(seq id no:8):
[0166][0167]
改造4:本发明人针对seq id no:8进行序列改造,在c端加上pdzlig的氨基酸序列,获得改进的4cl突变体4cl-(ggggs)
2-pdzlig,具体序列如下(seq id no:9):
[0168][0169]
其中,4cl位于seq id no:9的第1~544位;(ggggs)2位于seq id no:10的第545~554位;pdzlig位于seq id no:9的第555~561位。
[0170]
改造5:本发明人针对seq id no:6进行序列改造,再在n端加上sh3lig的氨基酸序列,再n端加上m氨基酸,获得改进的(ggggs)
2-4cl突变体sh3lig-(ggggs)
2-4cl(简称sh3lig-4cl),具体序列如下(seq id no:10):
t72b1-trf6h-t7cpr)质粒,pyh38(pacycduet1-t7matc-t7matb-t7acs-t7fabf)质粒共同转化入bl21(de3),得到工程菌dn-1,用于以苯丙氨酸为前体,发酵黄芩素。
[0188]
2、4cl-改造2、pal-改造2菌株(dn-2)
[0189]
将pzz41(pcdfduet1-t7pdzlig-4cl-t7pal-er/k-pdz-t7fnsi-t7chs-t7chi)质粒,pyh66(petduet1-t72b1-trf6h-t7cpr)质粒,pyh38(pacycduet1-t7matc-t7matb-t7acs-t7fabf)质粒共同转化入bl21(de3),得到自组装工程菌dn-2,用于以苯丙氨酸为前体发酵黄芩素。
[0190]
3、4cl无改造、pal-改造3菌株(dn-3,作为对照菌株)
[0191]
将pzz23(pet28a-t7-4cl-pal-er/k-sh3-chs)质粒,pzz12(pcdfduet1-chi-fnsi)质粒,质粒共同转化入bl21(de3),得到对照工程菌dn-3,以苯丙氨酸为前体,用于以苯丙氨酸为前体发酵黄芩素。
[0192]
4、4cl-改造5、pal-改造3菌株(dn-4)
[0193]
将pzz22(pet28a-sh3lig-t7-4cl-pal-er/k-sh3-chs)质粒,pzz12(pcdfduet1-t7-chi-fnsi)质粒,质粒共同转化入bl21(de3),得到自组装工程菌dn-4,用于以苯丙氨酸为前体发酵黄芩素。
[0194]
上述四种菌株进行发酵,发酵方法如下:菌株lb固体培养基(壮观霉素80μg/ml,氨苄青霉素100μg/ml,氯霉素34μg/ml)37℃培养过夜。挑取单个克隆到2ml lb液体培养基(壮观霉素80μg/ml,氨苄青霉素100μg/ml,氯霉素34μg/ml),转接过夜培养的菌液到新的10ml m9y液体抗性培养基中37℃,250r/min培养至od600=0.5~0.6,水浴降温至16℃左右,然后加入诱导剂iptg至终浓度0.2mm,加入终浓度为500mg/l经灭菌的苯丙氨酸并转至22℃低温诱导培养,在摇床转速220r/min条件下继续培养72h。取样检测黄芩素产量。
[0195]
结果显示,与非自组装的菌株dn-1相比,自组装菌株dn-2的黄芩素产量,提高6.6倍(图3)。hplc检测图谱如图4。
[0196]
结果显示,与对照菌株dn-3相比,自组装菌株dn-4的黄芩素产量,提高2.5倍(图5)。
[0197]
根据上述结果,说明本发明的改造方案能够显著提高黄芩素产量,如表3。
[0198]
表3
[0199][0200]
对于多种改造方案进行比较,本发明人优选pal改造2、4cl改造2或pal改造3、4cl改造5。
[0201]
实施例4、发酵工程菌检测野黄芩素
[0202]
本实施例中,以酪氨酸为前体,进行发酵。
[0203]
如前一实施例获得非组装的工程菌dn-1,用于以酪氨酸为前体发酵黄芩素。
[0204]
如前一实施例得到自组装工程菌dn-2,用于以酪氨酸为前体发酵黄芩素。
[0205]
上述两种菌株,在lb固体培养基(壮观霉素80μg/ml,氨苄青霉素100μg/ml,氯霉素34μg/ml)37℃培养过夜。挑取单个克隆到2ml lb液体培养基(壮观霉素80μg/ml,氨苄青霉
素100μg/ml,氯霉素34μg/ml),转接过夜培养的菌液到新的10ml m9y液体抗性培养基中37℃,250r/min培养至od600=0.5-0.6,水浴降温至16℃左右,然后加入诱导剂iptg至终浓度0.2mm,加入终浓度为500mg/l经灭菌的酪氨酸并转至22℃低温诱导培养,在摇床转速220r/min条件下继续培养72h。
[0206]
取样检测生长情况,野黄芩素产量。与菌株dn-1相比,自组装菌株dn-2的野黄芩素产量,提高1.43倍(图6)。
[0207]
实施例5、从葡萄糖合成黄芩素
[0208]
本实施例中,以葡萄糖为前体,进行发酵,合成途径如图9。
[0209]
1、非自组装菌株(dn-5)
[0210]
将pyh57(pcdfduet1-t74cl-t7pal-t7fnsi-t7chs-t7chi)质粒,pyh66(petduet1-t72b1trf6h-t7cpr)质粒,pzz55(pacycduet1-t7matc-t7matb-t7acs-t7fabf-t7phea
fbr-t7arog
fbr
)质粒共同转化入bl21(de3),得到非自组装工程菌dn-5,用于从葡萄糖合成黄芩素。
[0211]
2、4cl改造2,pal改造2菌株(dn-5)
[0212]
将pzz41(pcdfduet1-t7pdzlig-4cl-t7pal-er/k-pdz-t7fnsi-t7chs-t7chi)质粒,pyh66(petduet1-t72b1trf6h-t7cpr)质粒,pzz55(pacycduet1-t7matc-t7matb-t7acs-t7fabf-t7phea
fbr-t7arog
fbr
)质粒共同转化入bl21(de3),得到采用pdz和pdzlig互作方案的自组装工程菌dn-6,用于从葡萄糖合成黄芩素。
[0213]
上述建立的两种菌株,lb固体培养基(壮观霉素80μg/ml,氨苄青霉素100μg/ml,氯霉素34μg/ml)37℃培养过夜。挑取单个克隆到2ml lb液体培养基(壮观霉素80μg/ml,氨苄青霉素100μg/ml,氯霉素34μg/ml),转接过夜培养的菌液到新的10ml m9y液体抗性培养基中37℃,250r/min培养至od600=0.5-0.6,水浴降温至16℃左右,然后加入诱导剂iptg至终浓度0.2mm,并转至22℃低温诱导培养,在摇床转速220r/min条件下继续培养72h。
[0214]
结果显示,非自组装工程菌dn-5能够从葡萄糖中合成黄芩素,自组装工程菌株dn-6能够从葡萄糖中合成黄芩素,自组装工程菌株dn-6比非自组装工程菌株dn-5提高了111.7%(图7)。
[0215]
在本发明提及的所有文献都在本技术中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献