一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种纳米复合MeSiCN涂层的制备装置及其制备方法

2022-06-29 15:16:36 来源:中国专利 TAG:

一种纳米复合mesicn涂层的制备装置及其制备方法
技术领域
1.本发明涉及硬质涂层制备技术领域,具体涉及一种纳米复合mesicn涂层的制备装置及其制备方法。


背景技术:

2.随着对零件表面防护性能要求的提高,具有更高硬度和韧性的多元纳米复合超硬涂层(如tisicn、ticrsicn、cralsicn等)取得了比二元和三元硬质涂层更好的效果,由于形成非晶包裹纳米晶的三维网状结构,从而实现硬度、韧性等机械性能的提升,显著提高了零件的使用寿命,越来越受到材料工作者的关注。
3.沉积mesicn涂层的方法主要是基于等离子体化学气相沉积(pecvd)和等离子体物理气相沉积(pvd)的方法。
4.pecvd方法沉积效果较好,但是处理温度较高,限制了许多零件的应用;采用磁控溅射金属靶或金属合金靶制备多元纳米复合超硬涂层时,金属合金靶材生产难度大、价格昂贵,而且磁控溅射技术金属离化程度低。
5.采用等离子体增强磁控溅射技术(pems),反应气体离化提高,但是需要考虑灯丝密封以及配备灯丝电源,此外灯丝需要定期更换,而且金属离化率并没有显著提升;与磁控溅射相比,多弧离子镀技术的离化率高,金属离化率可达到80%以上,但是气体的离化率仍然较低,特别是对于不易离化的有机硅等气体分子,较低的离化率会导致膜层致密性下降;而且,在多弧靶工作过程中加入有机硅气体,容易发生靶中毒现象,导致弧压升高,放电不稳定,而且工件偏流降低。
6.利用辅助阳极增强阴极弧技术沉积多元纳米复合超硬涂层,在离化有机硅气体和减少靶中毒方面取得了较好效果,但是需要在真空室内增加阳极,真空室内空间受到影响,而且辅助阳极工艺操作较为复杂;此外需要考虑密封、水冷等,且辅助阳极容易污染导致其放电不稳定,且需要定期清理。


技术实现要素:

7.鉴于现有技术存在的问题,本发明的目的在于提供一种磁场增强脉冲多弧离子镀纳米复合mesicn涂层的装置及其方法,具有高沉积速率、成本低的特点。
8.本发明的技术方案如下:一种纳米复合mesicn涂层的制备装置,包括真空室、第一脉冲多弧电源、第二脉冲多弧电源、第一金属多弧靶源及第二金属多弧靶源,所述真空室内设有用于放置基体的转架,其底部设有进气口,所述转架与真空室转动连接,所述第一金属多弧靶源与第二金属多弧靶源设置于真空室的内壁上,两金属多弧靶源与真空室固定连接,所述第一金属多弧靶源和真空室之间连有第一脉冲多弧电源,第二金属多弧靶源和真空室之间连有第二脉冲多弧电源;转架和真空室之间连有偏压电源,所述真空室外靠近第一脉冲多弧电源和第二脉冲多弧电源分别设有第一电磁线圈和第二电磁线圈。
9.进一步地,包括第一进气管和第二进气管,第一进气管和第二进气管分别设置于第一金属多弧靶源的旁边和第二金属多弧靶源的旁边;包括第一流量计和第二流量计,所述第一流量计和第二流量计分别设置于第一进气管和第二进气管上。
10.进一步地,所述第一金属多弧靶源的电连接端与第一脉冲多弧电源的负极电气连接,第一脉冲多弧电源的正极与真空室电气连接;所述第二金属多弧靶源的电连接端与第二脉冲多弧电源的负极电气连接,第二脉冲多弧电源的正极与真空室电气连接;偏压电源的负极与转架的电连接端电气连接,偏压电源的正极与真空室的电连接端电气连接,且真空室接地。
11.进一步地,所述转架、第一金属多弧靶源及第二金属多弧靶源均与真空室绝缘;第一进气管与第一金属多弧靶源及真空室绝缘;第二进气管与第二金属多弧靶源及真空室绝缘;所述第一金属多弧靶源与第二金属多弧靶源相对设置,所述第一金属多弧靶源和第二金属多弧靶源均与真空室通过法兰固定连接。
12.本发明还提出了一种利用所述的装置镀纳米复合mesicn涂层的制备方法,包括如下步骤:1)将基体经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室内的转架上,将真空室抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)对1)步骤中得到的基体进行ar离子辉光清洗,清洗完后得到清洗后的待镀工件,备用;3)采用脉冲增强多弧离子镀技术或传统直流多弧离子镀技术应用于相向设置的两个金属靶,在2)步骤中得到的待镀工件上沉积过渡层,其中过渡层为me/men/mecn、me/men或me/mec;4)将3)步骤中得到的含过渡层的工件样品采用脉冲增强多弧放电制备mesicn涂层;即得到所要制备的纳米复合mesicn涂层。
13.进一步地,2)步骤中对1)步骤中得到的基体进行ar离子辉光清洗的具体过程如下:从进气口向真空室里通入ar气体,使得真空室的气压为0.3-1.0pa并保持,然后开启偏压电源,调整偏压值为-600~-1000v,占空比为10-80%,对基体进行ar离子轰击清洗,清洗时间为5-100min,得到清洗后的待镀工件,其中基体为不锈钢、高速钢或钛合金。
14.进一步地,3)步骤中过渡层包括第一过渡子层和第二过渡子层,第一过渡子层和第二过渡子层的具体制备过程如下:开启第一脉冲多弧电源和第二脉冲多弧电源,从进气口向真空室里通入ar气体,ar气体流量为100-500 sccm,维持真空室的气压为0.5-3.0 pa,调整偏压电源的偏压值为-50~-500v,沉积时间为10-60min,制备第一过渡子层me过渡层;然后,关闭ar气体,从进气口向真空室里通入n2或c2h2气体,气体流量为100-500 sccm,维持真空室气压为0.5-3.0 pa,沉积时间为10-60 min,制备第二过渡子层men或mec,沉积完成后得到过渡层me/men或me/mec。
15.进一步地,沉积第二过渡子层时,当从进气口只通入n2时,过渡层还包括第三过渡子层,其具体制备过程如下:
待第二过渡子层沉积完成后,继续通入n2,接着从进气口向真空室里通入c2h2气体,c2h2气体流量为100-500 sccm,维持真空室气压为0.5-3.0pa,沉积时间为10-60 min,沉积第三过渡子层,完成后得到me/men/mecn过渡层。
16.进一步地,3)步骤中采用脉冲增强多弧离子镀技术时,第一脉冲多弧电源和第二脉冲多弧电源的直流端和脉冲端同时开启,设置直流端电流为50-130a,脉冲端平均电流为50-130a,脉冲放电电流50-400a,频率为10-13000hz,脉宽为5-1000μs;采用传统直流多弧离子技术时,第一脉冲多弧电源和第二脉冲多弧电源只开启直流端,设置直流端电流为30-110 a。
17.进一步地,4)步骤中含过渡层的工件样品采用脉冲增强多弧放电制备mesicn涂层的具体过程如下:保持第一脉冲多弧电源和第二脉冲多弧电源开启,从第一进气管和第二进气管向真空室内通入有机硅气体,通过第一流量计和第二流量计调控有机硅气体流量;n2和c2h2气体混和后由进气口进入;维持真空室的气压为0.1-5.0 pa;调整偏压电源的偏压值为-50~-1000 v,占空比为5-80%,沉积时间为5-500 min;沉积完成后,关闭n2和c2h2的混合气体,关闭保持第一脉冲多弧电源和第二脉冲多弧电源,使真空室内降温至150~200℃后取出,继续冷却至室温,即得到基体上沉积的mesicn涂层;其中me为ti、cr、ticr、tial或cral;所述有机硅为硅烷、四甲基硅烷、三甲基硅烷、六甲基硅烷和甲基硅烷中的一种或多种;其中第一脉冲多弧电源和第二脉冲多弧电源同时开启直流端和脉冲端,直流端电流为50-130 a,脉冲端平均电流为50-130 a,脉冲放电电流50-400 a,频率为10-13000 hz,脉宽为5-1000μs;第一电磁线圈和第二电磁线圈电流为0.1~3 a。
18.与现有技术相比较,本发明的有益效果:1)采用本发明的技术方案,在金属靶前通入有机硅气体后,金属蒸汽和反应气体被磁场增强脉冲多弧发射出来的高密度电子离化,沉积在工件表面形成mesicn纳米复合涂层;2)本发明通过电磁线圈增强靶源脉冲多弧放电,利用有机硅来获得si和c的掺杂,可以有效提高有机硅气体的离化率,减少有机硅气体的用量,抑制弧靶中毒和有机硅气体加入对放电的不良影响,提高膜层质量,获得更为致密的涂层;3)在本发明的多弧离子镀过程中,可通过调整氮气、乙炔和有机硅气体的流量来控制等离子体的比例,利用电磁场增强脉冲多弧放电技术提高反应气体的离化率、提高阴极弧放电的稳定性,由此实现了对涂层成分和结构的调控;4)本发明在真空室内无需增加额外结构设计,并能够有效解决现有多弧离子镀工艺中加入含有碳、氮和硅元素的有机硅气体后,靶表面很容易生成导电差的反应物,导致放电不稳定、基体获得电流降低,涂层质量不好的问题;5)本发明具有设备简单、工艺简单、沉积速度快、成本低、膜基结合强度高等优点。
附图说明
19.图1为磁场增强脉冲多弧离子镀设备结构示意图;图2中(a)为本发明实施例1磁场增强脉冲多弧离子镀靶材在通入有机硅气体后的
弧斑放电图片;(b)为普通多弧离子镀靶材在通入有机硅气体后的弧斑放电图片;图3为本发明实施例3制得的mesicn涂层的压痕形貌图。
20.图中:1、真空室;2、第一脉冲多弧电源;3、第二脉冲多弧电源;4、第一电磁线圈;5、第二电磁线圈;8、第一流量计;9、第二流量计;10、第一金属多弧靶源;11、第二金属多弧靶源;12、第一进气管;13、第二进气管;14、进气口;15、转架;16、偏压电源。
具体实施方式
21.下面结合附图和实施例对本发明作进一步地说明,但本发明所保护的范围不限于所述范围。
22.如图1所示,一种纳米复合mesicn涂层的制备装置,包括真空室1、第一脉冲多弧电源2、第二脉冲多弧电源3、第一金属多弧靶源10及第二金属多弧靶源11,真空室1内设有用于放置基体的转架15,本发明中的基体为高速钢、不锈钢或钛合金,其底部设有进气口14,转架15与真空室1转动连接,第一金属多弧靶源10与第二金属多弧靶源11设置于真空室1的内壁上,两金属多弧靶源与真空室1固定连接,第一金属多弧靶源10和真空室1之间连有第一脉冲多弧电源2,第二金属多弧靶源11和真空室1之间连有第二脉冲多弧电源3;转架15和真空室1之间连有偏压电源16,真空室1外靠近第一脉冲多弧电源2和第二脉冲多弧电源3分别设有第一电磁线圈4和第二电磁线圈5,两电磁线圈通过漆包铜线绝缘。
23.本发明的一种纳米复合mesicn涂层的制备装置,包括第一进气管12和第二进气管13,第一进气管12和第二进气管13分别设置于第一金属多弧靶源10的旁边和第二金属多弧靶源11的旁边。
24.本发明的一种纳米复合mesicn涂层的制备装置,包括第一流量计8和第二流量计9,第一流量计8和第二流量计9分别设置于第一进气管12和第二进气管13上。
25.第一金属多弧靶源10的电连接端与第一脉冲多弧电源2的负极电气连接,第一脉冲多弧电源2的正极与真空室1电气连接;第二金属多弧靶源11的电连接端与第二脉冲多弧电源3的负极电气连接,第二脉冲多弧电源3的正极与真空室1电气连接;偏压电源16的负极与转架15的电连接端电气连接,偏压电源16的正极与真空室1的电连接端电气连接,且真空室1接地。
26.本发明的一种纳米复合mesicn涂层的制备装置,转架15、第一金属多弧靶源10及第二金属多弧靶源11均与真空室1绝缘;第一进气管12与第一金属多弧靶源10及真空室1绝缘;第二进气管13与第二金属多弧靶源11及真空室1绝缘。
27.本发明的一种纳米复合mesicn涂层的制备装置,第一金属多弧靶源10与第二金属多弧靶源11相对设置,第一金属多弧靶源10和第二金属多弧靶源11均与真空室1通过法兰固定连接。
28.实施例11)将不锈钢经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为0.8 pa并保持,然后开启偏压电源16,调整偏压值为-1000v,占空比为60%,对基体进行ar离子轰击清洗,清
洗时间为40min,得到清洗后的待镀工件;3)过渡层为ti/tin/ticn,沉积方法为:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中两脉冲多弧电源同时开启直流端和脉冲端,设置直流端电流为50a,脉冲端平均电流为50a,脉冲放电电流300a,频率为500 hz,脉宽为400μs;从进气口14向真空室1里通入ar气体,流量为200 sccm,维持真空室1的气压1.0 pa,调整偏压电源16的偏压值为-400v,沉积时间为40 min,制备ti过渡层;然后,关闭ar气体,从进气口14向真空室1里通入n2气体,流量为200 sccm,维持真空室1气压为1.5 pa,沉积时间40min,制备tin过渡层;从进气口14向真空室1里通入c2h2气体,流量为100 sccm,维持真空室1气压2.0 pa,沉积时间为40 min,制备ticn过渡层;4)脉冲增强多弧放电制备tisicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入硅烷和四甲基硅烷,通过流第一量计8和流量计二9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为1.5 pa;调整偏压电源16的偏压值为-200 v,占空比50%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,tisicn涂层的沉积时间为100min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直流端和脉冲端,直流端电流为50 a,脉冲端平均电流为50 a,脉冲放电电流400 a,频率为500 hz,脉宽为300 μs;第一电磁线圈4和第二电磁线圈5电流为0.5 a。
29.图2为磁场增强脉冲多弧离子镀和普通多弧离子镀靶材在通入有机硅气体后的弧斑放电图片,验证本发明解决有机硅气体毒化靶材问题的可行性。
30.实施例21)将钛合金经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为0.3pa并保持,然后开启偏压电源16,调整偏压值为-600v,占空比为10%,对基体进行ar离子轰击清洗,清洗时间为5min,得到清洗后的待镀工件;3)过渡层为cr/crn/crcn,沉积方法为:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中两脉冲多弧电源开启直流端,直流端电流为30a;从进气口14向真空室1里通入ar气体,流量为100 sccm,维持真空室1的气压0.5 pa,调整偏压电源16的偏压值为-50v,沉积时间为10 min,制备cr过渡层;然后,关闭ar气体,从进气口14向真空室1里通入n2气体,流量为100 sccm,维持真空室1气压为0.5 pa,沉积时间10min,制备crn过渡层;从进气口14向真空室1里通入c2h2气体,流量为200 sccm,维持真空室1气压0.5 pa,沉积时间为10 min,制备crcn过渡层;5)脉冲增强多弧放电制备crsicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入三甲基硅烷和六甲基硅烷,通过流第一量计8和流量计二9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为0.1 pa;调整偏压电源16的偏压值为-50 v,占空比5%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,crsicn涂层的沉积时间为5min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直
流端和脉冲端,直流端电流为50 a,脉冲端平均电流为50 a,脉冲放电电流400 a,频率为10 hz,脉宽为300μs;第一电磁线圈4和第二电磁线圈5电流为0.1 a。
31.实施例31)将钛合金经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为1.0pa并保持,然后开启偏压电源16,调整偏压值为-1000v,占空比为70%,对基体进行ar离子轰击清洗,清洗时间为60 min,得到清洗后的待镀工件;3)沉积ticr/ticrn过渡层:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中同时开启两个脉冲多弧电源直流端和脉冲端,设置直流端电流为60a,脉冲端平均电流为60 a,脉冲放电电流300 a,频率为200 hz,脉宽1000 μs,从进气口14向真空室1里通入ar气体,流量为400 sccm,维持真空室1的气压2.0 pa,调整偏压电源16的偏压值为-200v,沉积时间为60 min,制备ticr过渡层;然后,关闭ar气,从进气口14向真空室1里通入n2气体,流量为500 sccm,维持真空室1气压为3.0 pa,沉积时间为60min,制备ticrn过渡层;4)脉冲增强多弧放电制备ticrsicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入六甲基硅烷和甲基硅烷中,通过第一流量计8和第二流量计9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为3.0 pa;调整偏压电源16的偏压值为-100 v,占空比80%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,ticrsicn涂层的沉积时间为120 min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直流端和脉冲端,直流端电流为60 a,脉冲端平均电流为60 a,脉冲放电电流350 a,频率为200 hz,脉宽为800 μs;第一电磁线圈4和第二电磁线圈5电流为1 a。
32.采用洛氏硬度压痕仪器,对上述所得ticrsicn涂层结合强度等级进行检测,由图3可知,涂层结合强度等级为hf1,说明本发明方法制备ticrsicn涂层膜基结合好。
33.实施例41)将高速钢经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为1.0pa并保持,然后开启偏压电源16,调整偏压值为-1000v,占空比为80%,对基体进行ar离子轰击清洗,清洗时间为100min,得到清洗后的待镀工件;3)沉积tial/tialn过渡层:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中开启两个脉冲多弧电源直流端,设置直流端电流为110 a,从进气口14向真空室1里通入ar气体,流量为500 sccm,维持真空室1的气压3.0 pa,调整偏压电源16的偏压值为-500v,沉积时间为60 min,制备tial过渡层;然后,关闭ar气,从进气口14向真空室1里通入n2气体,流量为300 sccm,维持真空室1气压为2.0 pa,沉积时间为40min,制备tialn过渡层;
4)脉冲增强多弧放电制备tialsicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入六甲基硅烷和甲基硅烷中,通过第一流量计8和第二流量计9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为5.0 pa;调整偏压电源16的偏压值为-100 v,占空比70%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,tialsicn涂层的沉积时间为120 min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直流端和脉冲端,直流端电流为130a,脉冲端平均电流为130a,脉冲放电电流400a,频率为13000hz,脉宽为1000μs;第一电磁线圈4和第二电磁线圈5电流为3a。
34.实施例51)将不锈钢经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为0.5 pa并保持,然后开启偏压电源16,调整偏压值为-500,占空比为80%,对基体进行ar离子轰击清洗,清洗时间为100min,得到清洗后的待镀工件;3)沉积cral/cralc过渡层的具体过程如下:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中两脉冲多弧电电源同时开启直流端和脉冲端,设置直流端电流为100 a,脉冲端平均电流为100 a,脉冲放电电流为200 a,频率为500 hz,脉宽为1000 μs;从进气口14向真空室1里通入ar气体,流量为100 sccm,维持真空室1的气压0.5 pa,调整偏压电源16的偏压值为-500v,沉积时间为60 min,制备cral过渡层;然后,关闭ar气体,从进气口14向真空室1里通入c2h2气体,流量为100 sccm,维持真空室1气压0.8 pa,沉积时间为60 min,制备cralc过渡层;4)脉冲增强多弧放电制备cralsicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入硅烷,通过流量计一8和流量计二9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为1.0 pa;调整偏压电源16的偏压值为-50v,占空比5-80%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,cralsicn涂层的沉积时间为60 min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直流端和脉冲端,直流端电流为100 a,脉冲端平均电流为100 a,脉冲放电电流300 a,频率为350 hz,脉宽为1000 μs;第一电磁线圈4和第二电磁线圈5电流为3 a。
35.实施例61)将不锈钢经表面除油、抛光后浸入丙酮中超声波清洗,并酒精脱水,取出后吹干;然后将其置于真空室1内的转架15上,将真空室1抽至真空度小于5
×
10-4
pa,加热到400℃并保持该温度直至镀膜结束;2)从进气口14向真空室1里通入ar气体,使得真空室1的气压为0.5 pa并保持,然后开启偏压电源16,调整偏压值为-500,占空比为80%,对基体进行ar离子轰击清洗,清洗时间为100min,得到清洗后的待镀工件;3)沉积ti/tic过渡层的具体过程如下:开启第一脉冲多弧电源2和第二脉冲多弧电源3,其中两脉冲多弧电电源同时开启
直流端,设置直流端电流为80 a;从进气口14向真空室1里通入ar气体,流量为300 sccm,维持真空室1的气压2.5 pa,调整偏压电源16的偏压值为-300v,沉积时间为40 min,制备ti过渡层;然后,关闭ar气体,从进气口14向真空室1里通入c2h2气体,流量为300 sccm,维持真空室1气压0.8 pa,沉积时间为40 min,制备tic过渡层;4)脉冲增强多弧放电制备tisicn涂层:保持第一脉冲多弧电源2和第二脉冲多弧电源3开启,从第一进气管12和第二进气管13向真空室1内通入四甲基硅烷,通过流量计一8和流量计二9调控有机硅气体流量;n2和c2h2气体混和后由进气口14进入;维持真空室1的气压为1.0 pa;调整偏压电源16的偏压值为-500v,占空比50%;调整第一脉冲多弧电源2和第二脉冲多弧电源3,tisicn涂层的沉积时间为200min;其中第一脉冲多弧电源2和第二脉冲多弧电源3同时开启直流端和脉冲端,直流端电流为100 a,脉冲端平均电流为100 a,脉冲放电电流300 a,频率为350 hz,脉宽为500 μs;第一电磁线圈4和第二电磁线圈5电流为2 a。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献