一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

在由不导电陶瓷材料制成的制品的表面上沉积装饰性和/或功能性金属层的方法与流程

2022-06-01 04:20:52 来源:中国专利 TAG:
在由不导电陶瓷材料制成的制品的表面上沉积装饰性和/或功能性金属层的方法
1.本发明的技术领域
2.本发明涉及在由最初不导电的陶瓷材料(initially electrically non-conductive ceramic material)制成的成品或半成品制品的至少一部分表面上通过电镀生长(galvanic growth)沉积装饰性和/或功能性金属层的方法。
3.本发明的技术背景
4.目前用于在由不导电材料如陶瓷制成的成品或半成品制品上通过电镀生长沉积装饰性和/或功能性层的技术在于首先至少在这种制品的表面的一部分上沉积粘附层(adhesion layer),然后晶种层(seed layer),两者都是导电的。通常通过物理气相沉积(也称为pvd的技术)制成的粘附层可例如由铬制成。在沉积粘附层后,沉积晶种层。使用与粘附层相同的技术或类似技术沉积的这种晶种层优选使用与用于生长装饰性或功能性层的材料相同的材料(例如金)制成。在沉积晶种层后,利用铬和金层的良好电导率在该制品的表面上通过电镀生长以厚层形式生长装饰性或功能性层。
5.上文简要描述的类型的方法例如用于由氧化锆zro2制成的手表表圈(wristwatch bezels)的生产,在该表圈上构造由金或另一贵金属合金制成的嵌件(insert)。为此,预先在表圈上机械加工所需形状的凹槽。然后在表圈的整个表面上(包括在凹槽中)进行铬(粘附层)和金(晶种层)的薄层的pvd沉积,然后通过在晶种层上电镀通常基于金的合金而生长所需材料的厚层。最后,重新加工并机械抛光表圈的表面以除去过量的贵金属并将其仅留在凹槽中。
6.上述技术有利地能够在由不导电材料如陶瓷制成的成品或半成品制品上沉积功能性或装饰性层。但是,这种技术并非没有任何问题;其确实面临在氧化锆上的铬层和在铬层上的金层的层离问题,以致不得不弃置受这类问题影响的制品。同样地,物理气相沉积,作为相当定向的沉积技术,并非总能确保薄层完美匹配小尺寸结构的轮廓,如在手表的表圈中机械加工的凹槽。最后,由于在此处描述的情况中必须沉积不同性质的两种打底材料(primer materials)(例如用于粘附层的铬和用于晶种层的金),必须提供具有用于两种不同材料的至少两个阴极的设备。但是,这样的设备是昂贵的。如果无法提供这样的装置,则始终有可能沉积第一粘附层,然后在进行二次沉积前破坏真空以便能够用金靶更换铬靶。但是,这样的操作冗长和因此昂贵,并且即使采取预防措施也无法保证其成功,因此如果第一次沉积在靶更换过程中当该制品再次接触空气时受到污染和/或沾污,这会导致第二薄层在第一薄层上的层离问题。
7.在解决这些问题的尝试中,已经提出对成品或半成品陶瓷制品的至少一部分表面施以还原反应以将其显著脱氧至预定深度并使其导电。例如借助通过氢气和中性气体的混合物的电离形成的等离子体进行还原反应。根据等离子体处理的持续时间,显著还原的陶瓷表面层从该制品的表面延伸到20nm至10μm的深度。这种还原步骤因此能够从制品表面向其中心建立具有陶瓷的氧亚化学计量(an oxygen sub-stoichiometry of the ceramic)的表面层。
8.表面层的脱氧使其变得导电。因此,在这种还原步骤后,可在变得导电的陶瓷制品的表面部分上电镀金属材料层以形成装饰性和/或功能性图案。
9.上文简要描述的方法能够在由最初不导电的材料制成的制品的至少一部分表面上沉积装饰性和/或功能性金属层,同时避免普通粘附层和晶种层的物理气相沉积。这避免再出现通过pvd技术沉积的层的层离风险。尽管如此,已经意识到,为了使陶瓷制品足够导电以便沉积优质的装饰性和/或功能性金属层,必须非常明显地还原陶瓷,这无法毫无问题地实现。实际上,在许多领域,如制表业和珠宝业中,通过加入3摩尔%的氧化钇或三氧化二钇y2o3,使用在室温下以四方相t-zro2稳定化的氧化锆,特别是为了其高韧度。但是,四方氧化锆的强还原导致从四方相转变成韧性明显较低的立方相或单斜相。此外,由于陶瓷中存在的氧原子非常易活动,陶瓷的部分还原发生在陶瓷制品的大部分体积中,有时直至其中心,而不仅在其表面层中,这明显减弱该制品。
10.发明概述
11.本发明的目的是通过提出一种在由最初不导电材料制成的制品的至少一部分表面上通过电镀生长沉积装饰性和/或功能性层的方法来克服上文提到的问题以及其它问题,所述方法特别能够省去在制品表面上沉积附加层并且不会减弱该制品。
12.为此,本发明涉及一种在由不导电陶瓷材料制成的成品或半成品制品的至少一部分表面上沉积装饰性和/或功能性层的方法,这种沉积方法包括下列操作:
[0013]-对所述制品的该至少一部分表面施以渗碳或渗氮处理,在此期间碳或氮原子在所述制品的该至少一部分表面中扩散,然后
[0014]-在已经过渗碳或渗氮处理的所述制品的表面的至少所述部分上,通过金属材料的电镀生长沉积装饰性和/或功能性层。
[0015]
根据本发明的一个特定实施方案,所述制品由氧化锆zro2制成。
[0016]
根据本发明的另一特定实施方案,所述氧化锆在其四方相t-zro2中稳定化。
[0017]
根据本发明的再一特定实施方案,通过将3摩尔%的氧化钇y2o3添加到氧化锆的组合物中,使所述氧化锆在室温下在其四方相中稳定化。
[0018]
根据本发明的再一特定实施方案,对所述成品或半成品制品的表面的至少所述部分施以预先还原处理,在此期间从所述成品或半成品制品的表面向其中心发生脱氧。
[0019]
根据本发明的再一特定实施方案,所述制品的表面处理方法在等离子体反应器中或在热丝反应器(hot filament reactor)中进行。
[0020]
根据本发明的再一特定实施方案,当对所述制品施以等离子体渗碳处理时,将所述制品引入反应器,在其中生成由氢气、中性气体和痕量碳的混合物的电离获得的等离子体以创建由氢原子和碳原子组成的反应性气氛。
[0021]
根据本发明的再一特定实施方案,用于形成等离子体的痕量碳获自烃或此类烃的混合物。
[0022]
根据本发明的再一特定实施方案,所述烃选自乙烷、甲烷和乙炔。
[0023]
根据本发明的再一特定实施方案,当对所述制品施以等离子体渗氮处理时,将所述制品引入反应器,在其中生成由氢气、中性气体和痕量氮的混合物的电离获得的等离子体以创建由氢原子和氮原子组成的反应性气氛。
[0024]
根据本发明的再一特定实施方案,用于形成等离子体的痕量氮获自氮气n2或氨
nh3。
[0025]
根据本发明的再一特定实施方案,所述中性气体是氩气。
[0026]
根据本发明的再一特定实施方案,所述制品在由等离子体创建的反应性气氛中保持在15至240分钟之间的持续时间,优选等于150分钟的持续时间。
[0027]
根据本发明的再一特定实施方案,在等离子体处理过程中所述制品的平均温度在500℃至1300℃之间不等。
[0028]
根据本发明的再一特定实施方案,碳或氮原子的扩散形成碳化锆zrc或氮化锆zrn的微晶,至从制品表面向下1微米的深度。
[0029]
根据本发明的再一特定实施方案,在渗碳或渗氮处理后所述制品的表面电阻小于10ω/


[0030]
根据本发明的再一特定实施方案,用于电镀生长的金属材料选自金、银、铜、铂、铟、钯、铑、白青铜和黄青铜(white and yellow bronzes)、镍和这些金属的合金。
[0031]
由于这些特征,本发明提供能够在由最初不导电的陶瓷材料制成的制品上通过电镀沉积装饰性和/或功能性金属层的方法。这种方法的优点特别在于下述事实:其涉及该材料的固有转化现象(intrinsic phenomena of transformation),从而省略沉积粘附层和晶种层的常规操作并因此克服这些层沉积技术中固有的层离问题。此外,渗碳或渗氮处理天然地以相同速率施加到暴露于反应器气氛的制品的整个表面并因此比现有技术的粘附层和晶种层的定向物理气相沉积更有顺应性和更均匀。通过教导对由不导电陶瓷材料如氧化锆制成的制品施以渗氮或渗碳处理,本发明能在由此处理的制品的表面上创建具有比通过对该制品仅施以部分还原处理而获得的表面层高的电导率的表面层。实际上,在制品的表面层中的碳或氮原子的扩散在由氧原子留下的空缺位置形成碳化锆zrc或氮化锆zrn的微晶,其比简单还原的氧化锆zro
2-x
导电得多。因此,即使渗碳或渗氮操作必定意味着氧化锆在其整个体积中的部分还原,但这种还原的强度和因此脆化的相对风险与现有技术的纯还原处理相比可保持在相对较低的水平,同时赋予制品的表面层优异的电导率。本发明因此提供既更有效地使制品表面导电,又较少不利于这种制品的机械强度的方法。
[0032]
本发明的实施方案的详述
[0033]
本发明从创造性的总体思路出发,其在于对已预先经过渗碳或渗氮处理的不导电陶瓷制品施以通过电镀生长沉积具有装饰性和/或功能性功能的金属层。本发明因此有利地利用下述事实:陶瓷部件的渗碳或渗氮处理使其表面导电以能够通过电镀沉积金属层。由于本发明,因此特别有可能避免现有技术的粘附层和晶种层的物理气相沉积技术和通常与这些技术相伴的问题,即沉积层的层离风险和不佳的耐磨性。还应该指出,比起简单还原处理,渗碳或渗氮处理能使由最初不导电的陶瓷材料制成的部件成为更好的电导体。此外,渗碳或渗氮处理在比获得同等电导率所需的纯还原处理低的程度上减弱陶瓷部件。最后,用于渗碳或渗氮处理的技术,即等离子体或热丝,为扩散类型而不像pvd那样是定向类型。因此,用这种非定向技术处理例如凹槽或通孔比用定向技术如pvd更容易。
[0034]
作为示例性和非限制性实例,使用由具有四方晶体构型(氧化锆t-zro2)的氧化锆制品形成的起始物体,其根据用于制造陶瓷制品的普通技术制成,例如通过注射和烧结制成。
[0035]
这种制品可以是具有其使用时的最终形状和表面状况的成品,例如已经过抛光并
旨在构成钟表的外部元件(例如腕带连接(bracelet link))的大致平行六面体形状的部件。
[0036]
当然,该制品也可以是半成品,将在其上进行后续机械加工操作以使这种制品适合其最终用途。
[0037]
要指出,用于制造该制品的氧化锆优选通过加入3摩尔%的钇或氧化钇y2o3而在室温下以其四方相稳定化。
[0038]
然后对该制品施以等离子体渗碳处理。为此,将该制品引入反应器,在其中借助泵送系统创建至少部分真空,然后生成由氢气、中性气体和痕量碳的混合物的电离获得的等离子体。这种等离子体例如使用直流电放电获得。当然,可考虑其它手段,如射频(radio frequency,rf)波或微波以生成等离子体。
[0039]
根据用于获得等离子体的方法,使用氩气作为中性气体是有利的。也有可能使用氖气。
[0040]
用于形成等离子体的痕量碳可获自烃,如甲烷、乙炔、乙烷或其混合物。但是,将注意确保在该方法的过程中,等离子体的各种成分的相对浓度使得在制品表面上没有形成碳沉积。
[0041]
该制品在由等离子体创建的反应性气氛中保持在15至240分钟之间的持续时间,优选等于150分钟的持续时间。通过调节用于实施该方法的参数(向等离子体输送的功率、处理持续时间、气体混合物的组成、流量等),建立在600℃至1300℃之间的制品平均温度。辅助加热手段也可用于这一用途。
[0042]
在反应性气氛和温度的作用下,氧化锆制品被部分还原且碳原子从其表面向其中心扩散,以形成碳化锆zrc微晶的表面层。
[0043]
在等离子体渗碳后,该制品具有碳化锆特有的金属光泽和非零电导率,同时保持高表面硬度和高韧度以使其在正常使用条件下可耐受磨损。
[0044]
上文简要描述的等离子体渗碳法的基本吸引力之一在于氧化锆制品在大约10至1’000nm的相对较小厚度内转化的事实,该外部区域中的氧化锆(锆氧化物)转化成具有金属性质的碳化锆。优选地,调节等离子体渗碳法以使碳化锆表面层从制品的表面延伸到20至200nm的深度。
[0045]
其因此是氧化锆的结构表面改性为与碳化锆对应的新晶体结构,这对该制品的机械性质几乎没有影响。此外,这不是容易撕掉或从制品表面剥离的外加涂层的情况,特别是当制品经受高磨损条件时。
[0046]
从碳化锆表面层延伸到制品中心的过渡区包含zrc
1-y
类型的亚化学计量的碳化锆(sub-stoichiometric zirconium carbide),其碳含量随着靠近制品中心而逐渐降低。换言之,碳化锆的亚化学计量随着靠近制品中心而提高,同时从一定的深度逐渐以碳氧化锆zro
2-xc1-y
的形式出现递增量的氧。
[0047]
然后到达制品中心,其由zro
2-x
类型的部分还原氧化锆和四方相氧化锆t-zro2组成。
[0048]
根据本发明的另一实施方案,对四方氧化锆的成品或半成品制品施以等离子体渗氮处理。为此,将该制品引入反应器,在其中借助泵送系统创建至少部分真空,然后生成由氢气、中性气体和痕量氮的混合物的电离获得的等离子体。这种等离子体例如使用直流电
放电获得。当然,可考虑其它手段,如射频(rf)波或微波以生成等离子体。
[0049]
根据用于获得等离子体的方法,使用中性气体如氩气是有利的。也有可能使用氖气。关于用于形成等离子体的痕量氮,它们可获自氮气n2或氨nh3。
[0050]
通过调节用于实施该方法的参数(向等离子体输送的功率、处理持续时间、气体混合物的组成、流量等)以建立在500℃至900℃之间的制品平均温度,该制品在由等离子体创建的反应性气氛中保持在15至240分钟之间的持续时间,优选等于150分钟的持续时间。辅助加热手段也可用于这一用途。
[0051]
在反应性气氛和温度的作用下,氧化锆制品被部分还原且氮原子从其表面向其中心扩散,直至形成氮化锆zrn微晶的表面层。
[0052]
在等离子体渗氮后,该制品具有氮化锆zrn特有的金色金属外观和非零电导率,同时保持高表面硬度和高韧度以使其在正常使用条件下耐磨损。
[0053]
如同等离子体渗碳法的情况,上文简要描述的等离子体渗氮法的基本吸引力之一在于氧化锆制品在大约10至1000nm的相对较小厚度内转化的事实,该外部区域中的氧化锆(锆氧化物)转化成具有金属性质的氮化锆。优选地,调节等离子体渗氮法以使氮化锆表面层从制品的表面延伸到20至200nm的深度。
[0054]
如同等离子体渗碳法的情况,等离子体渗氮处理生成在表面氮化锆zrn和在部件中心的四方氧化锆t-zro2之间的化学计量梯度。氮化锆zrn表面层不构成会容易撕掉或从制品表面剥离的外加涂层,特别是当制品经受高磨损条件时。
[0055]
根据本发明的另一实施方案,对基于氧化锆的成品或半成品制品施以在热丝型反应器中进行的渗碳处理。为此,提供氧化锆的成品或半成品制品状态的制品,优选通过加入3摩尔%的钇或氧化钇y2o3以四方相稳定化的氧化锆的成品或半成品制品状态的制品。将该制品引入反应器,在其中使用泵送系统创建至少部分真空,然后由氢气和痕量烃(如甲烷)的混合物创建碳和氢原子的反应性气氛。为此,借助至少一个电阻元件(例如由耐火金属制成的长丝(filament))加热该制品和封闭在反应器中的气体。电流穿过长丝以使它们通过焦耳效应变热。优选确保这些长丝的温度达到至少1500℃。白热的(white-heated)长丝通过辐射加热该制品和气体直至氢气和烃解离,以产生氢和碳原子的反应性气氛。氧化锆制品的还原-渗碳反应随后使用与等离子体渗碳法中相同的扩散机制进行。
[0056]
同样地,在热丝反应器中渗氮处理的情况下,提供由氧化锆制成的成品或半成品制品状态的制品,优选通过加入3摩尔%的氧化钇或三氧化二钇y2o3以四方相稳定化的氧化锆制成的成品或半成品制品状态的制品。将该制品引入反应器,在其中使用泵送系统创建至少部分真空,然后由氢气和痕量氮气n2或氨nh3的混合物创建氮和氢原子的反应性气氛。为此,借助至少一个电阻元件(例如由耐火金属制成的长丝)加热该制品和封闭在反应器中的气体。电流穿过长丝以使它们通过焦耳效应变热。优选确保这些长丝的温度达到至少1500℃。由此白热的(white-heated)的长丝通过辐射加热该制品和气体直至氢气和氮气或氨解离,由此获得氢和氮原子的反应性气氛。氧化锆制品的还原-渗氮反应随后使用与等离子体渗氮法中相同的扩散机制进行。
[0057]
无论考虑的情况如何,即在等离子体反应器或热丝反应器中的渗氮或渗碳,反应器气氛中存在的氢原子通过在氧化锆表面上与彼此重组而参与制品的加热。实际上,通过重组,氢原子向氧化锆制品释放它们的一些能量。在热的作用下,制品中的一些氧向其表面
扩散并从中逸出。关于没有在制品表面上与其它氢原子重组的氢原子,所述氢原子与氧化锆中所含的氧原子重组并因此积极作用于氧化锆的还原。同时,碳或氮原子从制品的表面向中心扩散并替代已从制品中逸出的氧原子。碳或氮原子如此扩散到制品中导致出现表面层,其中这些原子与部分还原的氧化锆重组以分别形成碳化锆或氮化锆微晶。
[0058]
根据本发明的方法的一个特定实施方案,在渗碳或渗氮步骤前和优选在相同反应器中以便不必破坏真空,对该成品或半成品制品的至少一部分表面施以部分还原处理,在此期间从成品或半成品制品的表面向其中心发生脱氧。该预先还原步骤有效实现还原梯度,由此可更高效地形成碳化锆zrc或氮化锆zrn的层。
[0059]
要指出,通过氢气或氢气和中性气体的混合物的解离创建反应性气氛,以进行在等离子体或热丝反应器中进行的还原制品的预先步骤。这种预先还原步骤进行0.5至2小时的持续时间且氧化锆制品的温度优选在600℃至1300℃之间。
[0060]
与现有技术的纯还原法相比,等离子体或热丝渗碳和渗氮法需要大约150分钟的相对较短处理时间,并带来更好的可再现性。这使得根据本发明的方法容易工业利用。
[0061]
要指出,在渗碳或渗氮处理后,该制品的表面电阻通常小于10ω/

。单位ω/

等同于电阻的欧姆值,但具体表征薄层的表面电阻。该单位被定义为制成薄层的材料的以ohm.m表示的电阻率ρ和以米表示的薄层厚度之间的比率,其得出以ohms表示的单位,但标记为ω/

以表明其是薄层的表面电阻而非常规几何的导体的电阻。
[0062]
最后,在等离子体反应器或热丝反应器中进行的渗碳或渗氮处理后,由此获得的陶瓷制品的良好表面电导率用于通过电镀在其上沉积金属层。
[0063]
以优选但非限制性的方式,该金属选自金、银、铜、铂、铟、钯、铑、白青铜和黄青铜以及镍,和这些金属的合金。关于电镀生长(electroplating growth),这照惯例通过在浴中在阳极和阴极之间的电流循环进行,在所述浴中分散着一种或多种催化剂以及希望沉积在陶瓷制品上的金属。注意将陶瓷制品连接到该浴的负极(negative pole),即阴极。
[0064]
以优选但非限制性的方式,沉积参数是在60℃至70℃之间的浴温和在0.1至1.0a/dm2之间的电流密度。在沉积的金属是金-铜合金(au-cu)且催化剂是氰化钾的情况下,在渗碳部件上观察到通常在10至20微米/小时之间的生长速率。电流密度决定沉积的合金的滴定度(titre)(例如在0.4-0.5a/dm2之间的电流密度将沉积18开金)和所得生长速率。
[0065]
在由通过加入3摩尔%的氧化钇y2o3而以四方相稳定化的氧化锆制成的手表表盘(watch dials)和表圈(bezel)上进行电镀生长试验。该手表表圈包括借助激光凹刻的小时标记。所有部件在热丝反应器中渗碳。由此渗碳的部件的表面电阻小于10ω/

。在au-cu合金浴中进行电镀生长试验并允许沉积195微米厚的18开金层。经验表明,由于本发明的方法,氧化锆部件被金层覆盖。在表圈的特定情况下,小时标记被18开金填充。由于本发明,因此特别有可能避免现有技术的粘附层和晶种层的物理气相沉积技术和通常与这些技术相伴的问题,即沉积层的层离风险和不佳的耐磨性。
[0066]
无需说,本发明不限于刚刚描述的实施方案并且本领域技术人员可考虑各种简单修改和替代变体而不脱离如所附权利要求书界定的发明范围。特别要指出,本发明适用于制备用于钟表和首饰的由最初不导电的陶瓷材料制成的制品,如:手表中间部分(watch middle parts)、手表表圈(watch bezels)、手表表盘(watch dials)、腕带连接(bracelet links)、钟表机芯(horological movement,)的夹板(bridges)、护板(plates)或摆动块
(oscillating masses)、戒指、耳环等。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献