一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有注射器的衬底处理设备的制作方法

2022-05-26 14:35:48 来源:中国专利 TAG:


1.本发明涉及一种衬底处理设备,包括:
2.管;
3.多个气体注射器,用于向设备的内空间提供气体;
4.排气管,用于从内空间移除气体;以及
5.舟皿,其构造和布置成可移动到内空间中,并且设置有多个衬底保持器,用于在内空间中的衬底支撑长度上保持多个衬底。


背景技术:

6.衬底处理设备比如用于处理衬底例如半导体晶片的立式处理炉可以包括放置在钟罩形处理管周围的加热器。处理管的上端可以是封闭的,例如通过圆顶形结构,而处理管的下端表面可以是开放的。
7.此外,可以提供衬在管上的衬里。在衬里和处理管之间可以有小的圆周空间。衬里可以是封闭的衬里,其上端封闭,下端可由凸缘部分地封闭。由衬里和凸缘界定的内空间形成处理室,待处理的晶片可以在其中被处理。凸缘可以设置有入口开口,用于将承载晶片的晶片舟皿插入内空间。晶片舟皿可以置于门上,该门被竖直可移动地布置且配置成封闭凸缘中的入口开口。
8.凸缘可以支撑多个气体注射器,以向内空间提供气体。此外,可以提供排气管。该排气管可以连接到真空泵,用于从内空间抽出气体。由内空间中的注射器提供的气体可以是用于晶片上的沉积反应的反应(处理)气体。该反应气体也可以沉积在除晶片之外的其他表面上,例如它可以沉积在立式炉内的注射器中和注射器上。由这些沉积物形成的层可能会导致注射器的阻塞甚至破裂。


技术实现要素:

9.一种改进的衬底处理设备,包括:
10.管;
11.封闭衬里,其配置成衬在管的内部表面上,并且在下端设置有衬里开口,并且对于衬里开口上方的气体是基本封闭的;
12.多个气体注射器,用于向封闭衬里的内空间提供气体;
13.排气管,用于从内空间移除气体;以及
14.舟皿,其构造和布置成可经由衬里开口移动到内空间中,并且设置有多个衬底保持器,用于在内空间中的衬底支撑长度上保持多个衬底。气体注射器可以在顶部具有单个出口开口。多个注射器的出口开口可以在衬底支撑长度上基本均等地分开。
15.本发明的各种实施例可以彼此分开应用或者可以组合。本发明的实施例将参考附图中所示的一些示例在详细描述中进一步阐明。
附图说明
16.应当理解,附图中的元件是为了简单和清楚而示出的,并不一定按比例绘制。例如,图中一些元件的尺寸可能相对于其他元件被放大,以帮助提高对本公开的所示实施例的理解。
17.图1示出了根据实施例的衬底处理设备的一部分的剖视图;以及
18.图2示意性地示出了根据另一实施例的衬底处理设备的一部分的视图。
具体实施方式
19.在本技术中,相似或相应的特征由相似或相应的附图标记表示。各种实施例的描述不限于图中所示的示例,并且在详细描述和权利要求中使用的附图标记不旨在将所描述的内容限制于图中所示的示例。
20.图1示出了根据实施例的衬底处理设备的一部分的剖视图。该衬底处理设备可以包括:
21.管tb;
22.封闭衬里cl,其配置成衬在管tb的内部表面上,并且在下端设置有衬里开口lo,并且对于衬里开口上方的气体是基本封闭的;
23.舟皿bt,其构造和布置成可经由衬里开口移动到内空间中,并且设置有多个衬底保持器,用于在内空间中的衬底支撑长度l0上保持多个衬底w;
24.多个气体注射器i1至i3,用于向封闭衬里cl的内空间提供气体;以及
25.排气gx管,用于从内空间移除气体。封闭衬里cl可以包括由下端的衬里开口lo和较高端的顶部封闭件限定的大致圆柱形壁cw。封闭衬里cl对于衬里开口lo上方的气体可以是基本封闭的。
26.多个注射器中的气体注射器i1至i3可以在顶部具有单个出口开口o1至o3。除了在顶部用作气体出口的单个出口开口o1至o3之外,多个注射器中的气体注射器i1至i3可以沿着注射器的长度基本封闭。多个注射器中的气体注射器i1至i3可以设置有气体入口,其中仅示出了注射器i3的气体入口ge3。设置有在顶部用作气体出口的单个出口开口的气体注射器可能比沿其长度具有用作气体出口的多个开口的注射器更加坚固。
27.气体注射器i1至i3可以具有不同的长度l1至l3。多个注射器中的最长注射器i3可以延伸到接近封闭衬里cl的顶部封闭件tc。多个注射器中的最长注射器可以延伸到衬里cl的顶部封闭件tc的1至20cm内。多个气体注射器中的每个气体注射器i1至i3可以具有不同的长度,使得每个注射器的单个出口开口在不同高度处将气体排放到内空间中。
28.衬底处理设备可以设置有凸缘fl,以至少支撑衬里cl并且配置为至少部分地封闭衬里开口lo。排气装置ex可以靠近衬里开口lo设置,例如排气装置ex可以设置在凸缘fl中靠近衬里开口lo,以从内空间移除气体,从而在内空间中产生向下流动。
29.凸缘fl可以包括入口开口io,其配置成将配置成在衬底支撑长度上保持多个衬底w的舟皿bt传送到封闭衬里cl的内空间或从封闭衬里cl的内空间传送。多个注射器i1至i3的一部分的开口可以在舟皿bt的衬底支撑长度l0上基本均等地分开。因此,每个注射器i1、i2、i3的单个出口开口在不同高度处将气体排放到内空间中至舟皿bt中的衬底w。
30.舟皿bt可以构造和布置成沿竖直方向延伸到反应室中,并且可以设置有多个衬底
保持器,用于将多个衬底竖直地水平保持在衬底支撑长度l0上到反应室中。该设备可以具有n个注射器,例如2、3、4、5或6个。
31.n个注射器中的最长注射器l3可以沿着多个衬底w延伸到反应室中的距离l3等于衬底支撑长度l0的0.6到1倍。n个注射器中的最短注射器i1可以沿着多个衬底延伸到反应室中的距离l1等于衬底支撑长度l0的0.1到0.4倍。n个注射器中既不最长也不最短的注射器i2可以沿着多个衬底延伸到反应室中的距离l2等于衬底支撑长度l0的0.3至0.7倍。因此,每个注射器的单个出口开口在不同高度处将气体排放到内空间中至舟皿bt中的衬底w。因此,多个注射器的出口开口可以在衬底支撑长度l0上基本均等地分开,这有助于在舟皿bt上均匀地散布处理气体。这有助于在由舟皿bt支撑在衬底支撑长度l0上的衬底上基本均匀地沉积层。对流经单个注射器的处理气体的流量的小调节可用于进一步优化均匀性。
32.对于用于处理直径为200mm的晶片的衬底处理设备,衬底支撑长度h0可以在40和90cm之间,优选在50和80cm之间,最优选约为60cm。对于用于处理直径为300mm的晶片的衬底处理设备,衬底支撑长度h0可以在60和150cm之间,优选在80和130cm之间,优选约为90或120cm。
33.图2示意性地示出了根据另一实施例的衬底处理设备的一部分的视图。图2示出了注射器i1、i2和i3的长度l1、l2和l3与舟皿bt中的衬底支撑长度l0之间的关系。每个气体注射器i1、i2和i3在顶部具有单个出口开口o1、o2和o3。多个n个注射器的出口开口o1、o2和o3在衬底支撑长度l0上基本均等地分开。舟皿bt可以构造和布置成沿竖直方向延伸到衬里cl的内空间中。舟皿可以设置有多个(40至180个)衬底保持器,用于在内空间和设备中将多个衬底竖直地水平保持在衬底支撑长度l0上。
34.n个注射器中的最长注射器可以沿着多个衬底延伸的距离l3在衬底支撑长度l0的(1-1/n)至1倍之间。在图2的示例中,n是3,这将导致注射器i3的长度l3在衬底支撑长度l0的2/3和1倍之间,优选地约为衬底支撑长度l0的5/6。
35.n个注射器中的最短注射器可以沿着多个衬底延伸的距离l1在衬底支撑长度l0的0至1/n倍之间。在图2的示例中,n是3,这将导致注射器i1的长度l1在衬底支撑长度l0的0和1/3倍之间,优选地约为衬底支撑长度l0的1/6。
36.n个注射器中既不最长也不最短的注射器可以沿着多个衬底延伸的距离等于衬底支撑长度l0的1/n到(1-1/n)倍。在图2的示例中,n是3,这将导致注射器i2的长度l2在衬底支撑长度l0的1/3和2/3倍之间,优选地约为衬底支撑长度l0的3/6。
37.注射器i1的长度l1在衬底支撑长度l0的0和1/3倍之间,注射器i2的长度l2在衬底支撑长度l0的1/3和2/3倍之间,注射器i3的长度l3在衬底支撑长度l0的2/3和1倍之间,可以确保多个注射器的出口开口可以在衬底支撑长度l0上基本均等地分开。因此,处理气体可以基本均匀地散布在舟皿bt上。将处理气体均匀地散布在舟皿bt上有助于均匀地沉积在由舟皿bt支撑在衬底支撑长度l0上的衬底上。对流经单个注射器的处理气体的流量的小调节可用于进一步优化均匀性。
38.回到图1,衬底处理设备可以设置有竖直可移动的门dr,其配置为封闭凸缘fl中的入口开口io。门dr可以配置成支撑舟皿bt。注射器i1至i3之一内的气体传导通道的水平内横截面积可以在100和1500mm2之间。
39.注射器i1至i3内的气体传导通道的水平内横截面的形状在与大致圆柱形衬里cl
的圆周相切的方向上的尺寸可以大于在径向方向上的尺寸。衬底处理设备还可以包括用于容纳硅前体的容器,该容器可操作地连接到注射器i1至i3,以在内空间中提供作为气体的硅前体。该设备可以包括流量控制器,用于调节多个气体注射器i1至i3中的每个的气体流速,以提高均匀性。例如,给较短注射器比较长注射器更高的流量。
40.衬底处理设备可以包括围绕管tb并配置为加热管内部的加热器。管tb可以是低压处理管。
41.凸缘fl可被设置成至少部分地封闭下管tb的开口。竖直可移动布置的门dr可以配置成封闭凸缘3中的中心入口开口io,并且可以配置成支撑配置成保持衬底w的晶片舟皿b。凸缘3可以部分地封闭处理管tb的开口端。门dr可以设置有基座pd。基座pd可以旋转以使内空间中的晶片舟皿bt旋转。在舟皿bt中的最低衬底下方,可以提供流动空间以防止反应气体在舟皿bt中的衬底w之间流动。
42.排气装置gx可以构造和布置成用于从内空间移除气体,并且可以构造和布置在注射器下方。通过在用于气体的衬里开口lo上方封闭衬里cl,并且通过位于内空间上端的注射器开口o1至o3用注射器i1至i3向内空间提供气体和通过位于内空间下端的排气装置gx从内空间移除气体,可以在封闭衬里cl的内空间中产生向下流动。这种向下流动可以将污染物或反应副产物、颗粒从衬底w、舟皿b、衬里cl和/或支撑凸缘fl向下输送到排气装置gx,远离处理过的衬底w。
43.用于从内空间i移除气体的排气装置gx可以设置在封闭衬里cl的开口端下方。这可能是有益的,因为处理室的污染源可能是由封闭衬里cl和凸缘fl之间的接触形成的。更具体地,源可以存在于开口端的封闭衬里cl的下端表面与凸缘fl接触的位置。在衬底w的处理过程中,特别是在处理后卸载舟皿bt的过程中,封闭衬里cl和凸缘fl可能会经受热量,该热量增加封闭衬里cl和凸缘fl的温度。由于温度升高,封闭衬里cl和凸缘fl可能会发生热膨胀,这导致它们径向膨胀。由于封闭衬里cl和凸缘fl可以具有不同的热膨胀系数,因为例如封闭衬里cl可以由碳化硅制成,凸缘fl由金属制成,所以封闭衬里cl和凸缘fl可以在膨胀期间相对于彼此移动。这可能导致封闭衬里cl的下端表面和凸缘fl的上表面之间的摩擦,这可能导致污染物例如小颗粒从封闭衬里cl和/或凸缘fl脱离。颗粒可能迁移到处理室中,并可能污染处理室和正在处理的衬底。
44.通过基本封闭用于气体的衬里开口上方的封闭衬里,利用衬里开口上方的注射器的单个出口开口向内空间提供处理气体和通过衬里开口下方的排气所述gx从内空间移除气体,可以在内空间中产生向下流动。这种向下流动可以将颗粒从衬里-凸缘界面向下输送到排气装置,远离处理过的衬底w。
45.管tb可以制造得相当厚并且由相对强的抗压强度材料制成,因为相对于管tb内部的低压,它可能必须补偿大气压力。例如,低压处理管tb可以由5至8mm优选约6mm厚的石英制成。石英的热膨胀系数(cte)非常低,为0.59
×
10-6k-1(见表1),这使得更容易应对设备中的热波动。尽管沉积材料的cte可能更高(例如,si3n4的cte=3
×
10-6k-1,si的cte=2.3
×
10-6k-1),但差异可能相对较小。当膜沉积到由石英制成的管上时,即使管经历许多大的热循环,它们也可能粘附,但污染的风险可能会增加。
46.封闭衬里cl可以避免管tb内部的任何沉积,因此可以减轻管tb上的沉积脱落的风险。因此,管tb可以由石英制成。
47.碳化硅(sic的cte=4
×
10-6k-1)的封闭衬里cl可以在cte方面提供沉积膜和封闭衬里之间的良好匹配,导致在可能需要从衬里移除沉积膜之前具有更大的累积厚度。cte的不匹配导致沉积膜破裂和剥落,以及相应的高颗粒数,这是不希望的并且可以通过使用sic衬里cl来减轻。同样的机理可能适用于注射器i1至i3,如果有太多不同热膨胀的材料沉积在其中,注射器可能会破裂。因此,用碳化硅或硅制造注射器i1至i3可能是有利的。可替代地,注射器可以由石英制成。
48.表1半导体处理中的材料热膨胀系数(cte)
49.材料热膨胀(ppm/k)石英0.59氮化硅3硅2.3碳化硅4.0钨4.5
50.材料是否适于衬里cl和/或注射器i1至i3可能取决于沉积的材料。因此,有利的是能够使用与衬里cl和/或注射器i1至i3具有基本相同热膨胀的材料用于沉积材料。因此,有利的是能够使用热膨胀系数相对高于石英的材料用于衬里cl和/或注射器i1至i3。例如,可以使用碳化硅sic。碳化硅衬里可以在4至6mm之间优选5mm厚,因为它不必补偿大气压力。压力补偿可以用管tb来完成。
51.对于沉积cte在约4
×
10-6k-1和6
×
10-6k-1之间的金属和金属化合物材料的系统,比如tan、hfo2和tao5,衬里和注射器材料的cte优选可以在约4
×
10-6k-1和9
×
10-6k-1之间,包括例如碳化硅。
52.为了沉积具有甚至更高cte的材料,封闭衬里cl和/或注射器i1至i3的材料可以选择为例如表2所示。
53.表2陶瓷结构材料的热膨胀系数(cte)
54.材料热膨胀(ppm/k)马科尔12.6氮化硼11.9普通玻璃9莫来石5.4
55.凸缘fl可以设置有凹槽,该凹槽构造和布置成在其中提供密封件,例如o形环or,以在凸缘fl和管tb之间提供良好密封。这种良好密封是必要的,因为凸缘fl、管tb和o形环or可以形成外部大气压力和管tb内部低压之间的压力屏障的一部分。o形环or可以设置在石英的界面处,因为石英具有相对低的热膨胀,所以石英相对于o形环or没有太大的移动,这可能导致o形环or的磨损。在凸缘fl之间以及凸缘fl和门dr之间可以使用不同的o形环。
56.用注射器降低压力可能导致注射器内的反应速率降低,因为反应速率通常随着压力的增加而增加。注射器内低压的附加优点是通过注射器的气体体积在低压下膨胀,并且对于恒定的源气体流量,源气体在注射器内的停留时间相应减少。由于两者的结合,可以减少源气体的分解,从而也可以减少注射器内的沉积。
57.注射器内的沉积可能导致注射器的抗拉强度,从而导致注射器在温度变化时断
裂。因此,注射器内较少的沉积延长了注射器的寿命。注射器可以由具有与处理气体一起沉积的材料的热膨胀系数的材料制成。例如,如果氮化硅被沉积,则气体注射器可以由氮化硅制成,或者如果硅被处理气体沉积则由硅制成。因此,注射器内沉积层的热膨胀可以与注射器的热膨胀相匹配,降低了气体注射器在温度变化期间破裂的可能性。碳化硅可能是注射器的合适材料,因为它具有与许多沉积材料相匹配的热膨胀。
58.为了便于源气体在注射器内沿着注射器的长度方向流动,注射器可以设置大的内横截面。为了能够将根据本发明的注射器容纳在反应空间内,注射器的切向尺寸可以大于径向尺寸,并且限定反应空间的衬里可以设置有向外延伸的凸起以容纳注射器。
59.在一实施例中,提供二元膜的两种构成元素的两种源气体在进入注射器之前在气体供应系统中混合。这可能是确保注射的气体在舟皿bt的长度上成分均匀的最简单方法。然而,这并不重要。可替代地,两种不同的源气体可以通过单独的注射器注射,并在注射后在反应空间中混合。
60.对于多个注射器i使用多个流量控制器允许气流的一些调节可能性。后者对于微调舟皿bt上的衬底w上沉积速率的均匀性可能是必要的。流量可调节至50至1000sccm之间的值。
61.虽然上面已经描述了具体实施例,但应当理解,本发明可以不同于所描述的方式来实施。以上描述旨在说明而非限制。因此,对于本领域技术人员来说显而易见的是,在不脱离下面阐述的权利要求的范围的情况下,可以对前述发明进行修改。各种实施例可以组合应用或者可以彼此独立地应用。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献