一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种单晶炉的组合套筒及单晶炉的制作方法

2022-03-19 12:28:21 来源:中国专利 TAG:


1.本发明涉及晶棒制备技术领域,具体涉及一种单晶炉的组合套筒及单晶炉。


背景技术:

2.随着微电子产业制程的不断提高,对硅晶圆材料的品质有了更高的要求,而好的品质意味着要管控好晶棒中的晶体缺陷。晶棒中的晶体缺陷主要分为两大类,一类是由过饱和的间隙聚集而成的缺陷,这类缺陷不会影响mos元器件栅极氧化物完整性(gate oxide integrity,简称goi);另一类是由空位聚集而成的缺陷,这类生长缺陷与goi的良率有很大关系,常见的空位缺陷有cops(crystal originated particles)、fpd(flow pattern defects)、lstds(laser scattering tomography defects)等。这些缺陷的生成与晶棒的轴向温度差g有关,而轴向温度差g可以根据热场的设计进行调节。
3.热场中关于导流筒的设计至关重要,其直接影响了晶棒轴向温度差g和晶棒边缘处的轴向温度差与晶棒中心处的轴向温度差的差值δg的大小,进而影响晶棒中的缺陷类型和分布。在拉晶过程中由于现有导流筒的局限性,导致液面大量热量传输到晶棒表面,这导致晶棒边缘区域的轴向温度变小,而晶棒中心区域的轴向温度差基本不变;进而使得δg增大,根据v/g理论,此时空位缺陷会集聚生长,这将减小无缺陷生长的区域,不利于晶棒的无缺陷生长。


技术实现要素:

4.有鉴于此,本发明提供一种单晶炉的组合套筒及单晶炉,能够解决现有技术中的导流筒结构无法很好地调节晶棒轴向温度差和晶棒边缘处的轴向温度差与晶棒中心处的轴向温度差的差值,不利于晶棒的无缺陷生长的问题。
5.为解决上述技术问题,本发明采用以下技术方案:
6.本发明一方面实施例提供了一种单晶炉的组合套筒,包括:内筒、外筒、环形底盘和套管,所述内筒呈倒锥形,所述内筒的上端与所述外筒的上端连接,所述外筒的下端与所述环形底盘的外缘部密封连接,所述内筒的下端与所述环形底盘的上表面固定连接,所述套管穿设固定于所述环形底盘的环口内。
7.可选的,所述内筒和所述外筒的材质为石墨材料。
8.可选的,所述环形底盘的材质为金属钼。
9.可选的,所述套管的材质为石英材质。
10.可选的,所述内筒、所述外筒和所述环形底盘之间围合形成的空腔内设置有第一填充体和第二填充体,所述第一填充体位于所述第二填充体的上方,所述第一填充体采用导热材料制成,所述第二填充体采用隔热材料制成。
11.可选的,所述套管呈空心圆柱状,所述套管的外壁上形成有第一凸环,所述第一凸环密封搭设于所述环形底盘的上表面。
12.可选的,所述套管的下端部伸出于所述环形底盘的底部,且所述下端部设有水平
向外延伸的第二凸环。
13.可选的,所述环形底盘的外缘部形成有第一螺纹,所述外筒的下端形成有第二螺纹,所述环形底盘和所述外筒通过所述第一螺纹和所述第二螺纹实现螺纹配合连接。
14.本发明另一方面实施例还提供了一种单晶炉,包括如上所述的组合套筒。
15.本发明上述技术方案的有益效果如下:
16.根据本发明实施例的组合套筒,在保持硅熔液固、液气三相交界点稳定的前提下,保证惰性气体有序稳定地从硅熔液表面掠过,在带走一氧化硅气体的同时,可以使硅熔液部分热量向晶棒表面传输,减小了晶棒下端的边缘轴向温度差以及边缘轴向温度差与中心轴向温度差的差值,使其接近于理想值,有助于晶棒的无缺陷生长,晶棒上端快速冷却,使得晶棒快速度过缺陷形核长大的温度区间,最终制得高品质的晶棒。
附图说明
17.图1为本发明实施例提供的组合套筒的结构示意图;
18.图2为本发明实施例提供的单晶炉的结构示意图;
19.图3为本发明实施例提供的晶体缺陷在晶棒纵向剖切面的分布示意图。
具体实施方式
20.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
21.请参考图1至图2,图1为本发明实施例提供的组合套筒的结构示意图,图2为本发明实施例提供的单晶炉的结构示意图。如图1和图2所示,本发明实施例中的组合套筒可以包括套管1、环形底盘2、外筒4和内筒5,其中,外筒4内部中空且上下开口,外筒4套设在内筒5的外围;具体地,内筒5的上端和外筒4的上端连接,内筒5的上端开口略小于外筒4的上端开口,以确保内筒5可以设置于外筒4的内部,内筒5的上端和外筒4的上端具体可以采用搭接或者螺栓固定连接等等,此处不限定具体的连接方式;而外筒4的下端则与环形底盘2的外缘部(即外周)密封连接,内筒5的下端与环形底盘2的上表面固定连接,内筒5呈倒锥形,因此内筒5的下端与环形底盘2的上表面的接触点靠近环形底盘2的内周;套管1则穿设固定在环形底盘2的环口内,套管1的大部分位于内筒5的内部空腔,而套管1的下端部伸出于环形底盘2的底部,套管1的外径与环形底盘2的环口直径相适配,以使两者之间密封性能较好。
22.本发明实施例中,环形底盘2的外缘部形成有第一螺纹,外筒4的下端形成有第二螺纹,环形底盘2和外筒4通过所述第一螺纹和所述第二螺纹实现螺纹配合连接;通过螺纹配合的方式可以方便底筒1和外筒4之间拆离,同时也可以实现较为紧固的连接,避免在惰性气体的吹动下发生松动。
23.本发明实施例中,套管1呈空心圆柱状,在套管1的外壁上形成有第一凸环11,套管1通过第一凸环11密封搭设于环形底盘2的上表面,实现密封固定,从而惰性气体只能从套管1的上端口进入到套管1的内部,流经套管1与晶棒6之间的间隙,最终从套管1的下端口流
到硅熔液9的表面,带走硅熔液9表面形成的一氧化硅气体,避免一氧化硅气体对晶棒6的品质造成不良影响。现有技术中,导流筒采用倒锥形的设计,这不利于惰性气体流动的稳定性,很容易发生紊流,而且惰性气体无法与晶棒充分接触,这削弱了惰性气体的冷却效果,而与现有技术中的倒锥形的导流筒相比,本发明实施例中的套管1呈空心圆柱状,可以保证惰性气体的垂直流动的稳定性,在保证晶棒6的热量快速释放的同时,惰性气体可以从晶棒6与套管1的内壁之间的间隙流过,与晶棒6的表面充分接触,提高晶棒6的冷却速率,同时可以提高拉晶速度,减少时间成本。
24.相对于现有技术中采用的石墨导流筒而言,本发明实施例中的套管1的材质为石英材质,套管1的下端部伸出于环形底盘2的底部,并且套管1的下端部形成有水平向外延伸的第二凸环12,第二凸环12可以在惰性气体由套管1的下端开口流出时保证惰性气体有序稳定地掠过硅熔液9的表面,带走一氧化硅气体的同时,维持固、液、气三相点的稳定,还可以使硅熔液9的部分热量向晶棒6的下端传输,增大了晶棒6下端的边缘轴向温度差g,减小了晶棒6的边缘轴向温度差与中心轴向温度差的差值δg,使其接近于理想值,进而尽可能地增大了晶棒6中纵向的无缺陷区域,提高了晶棒6的整体品质。
25.本发明实施例中,环形底盘2的材质为反射隔热材料,更具体的说,环形底盘2的材质为金属钼;通过上述设计,可以对环形底盘2的环口内部进行保温,保持硅熔液8上的固、液、气三相交界点的稳定,保持温度场的稳定性,并且金属钼材质的环形底盘2可以有效地反射液面散发的热量,有助于硅熔液8液面及周边温度场的稳定;金属钼材质的环形底盘2还可以保持通过其内部的晶棒6的部分的温度的恒定,在底筒1对应的高度位置形成稳定的温度场,保证晶棒6的轴向温度差g的恒定,提高晶棒6下端的温度,有助于晶棒6在该高度位置的无缺陷生长。
26.本发明实施例中,内筒5和外筒4的材质为导热材料,更具体的说,内筒5和外筒4的材质为石墨材料,导热材质的内筒5和外筒4可以有助于位于内筒5的内部的晶棒6在该高度部位快速冷却,即晶棒6的处于内筒5的内部的部分的热量通过内筒5和外筒4向外快速散去,使得晶棒6快速度过缺陷形核长大的温度区间,有效抑制晶棒6中缺陷的长大,从而减少晶棒6的缺陷生长。
27.本发明实施例中,内筒5、外筒4和环形底盘2之间围合形成的空腔内设置有填充体4,填充体4包括第一填充体31和第二填充体32,其中,第一填充体31位于第二填充体32的上方,第一填充体31采用导热材料制成,第二填充体32采用隔热材料制成;也就是说,内筒5、外筒4和环形底盘2之间围合形成的空腔内分为了两部分,上部则填充了第一填充体31,由于该高度位置需要使晶棒6的温度快速冷却下来,因此,第一填充体31采用导热材料,配合采用石墨材料的内筒5和外筒4,以将晶棒6的热量快速地向外传递;而对于下部则填充了第二填充体32,由于该高度位置需要保持晶棒6的温度恒定,因此第二填充体32采用隔热材料,第二填充体32既可阻挡自下而上的热量传递,也可以阻挡自内向外的热量传递,以减少热量外散。
28.本技术实施例中,一方面,利用金属钼材质的环形底盘2使通过其内部的晶棒6的部分的温度的恒定,提高晶棒6下端的温度,在底筒1对应的高度位置形成稳定的温度场,另一方面,通过使内筒5和外筒4的材质为导热材料,并在内部填充导热材料和隔热材料,使得通过内筒5上部的晶棒6的温度快速下降,由此增大了晶棒6的轴向温度差g的值,使晶棒6的
无缺陷生长区域更大。
29.请参考图3,为本发明实施例提供的晶体缺陷在晶棒纵向剖切面的分布示意图。如图3所示,在高速的提拉条件下生长时是由空位占主导形成的空位簇或空隙区,也即空位型缺陷区域(v-rich区);减小拉速v则形成晶体原生氧化颗粒区域(p band),该区域可通过施行特定的氧化热处理时以环状的氧化诱生层错(oisf)的形式显现化;若是进一步减小提拉速度v,则存在氧析出物且检测不到原生缺陷的晶体区域即是氧析出促进区域(pv),其次,形成不易引起氧析出且检测不到原生缺陷的晶体区域,即是氧析出抑制区域(pi);进一步降低拉速时,少量的间隙硅原子聚集形成小的自间隙硅团簇(b band);在更低拉速下进而形成可检测到大位错团的晶体区域的位错团区域,也即间隙型缺陷区域(i rich区)。图3中曲线1为现有技术中加石墨套管/套筒之后的空位型缺陷分布情况,可以看出,曲线1的变化程度大,两端下突明显,这导致晶棒的无缺陷区域明显减少,此时晶棒的边缘处会出现空位型缺陷,不利于晶棒的无缺陷生长;而图3中曲线2为本发明实施例中加石英材质的套管1之后的空位型缺陷分布情况,可以看出,在采用本发明实施例中的石英材质的套管1后,曲线2趋于平缓,两端下突明显减小,从而增大了晶棒的无缺陷区域,提高了晶棒的整体品质。
30.根据本发明实施例的组合套筒,在保持硅熔液固、液气三相交界点稳定的前提下,保证惰性气体有序稳定地从硅熔液表面掠过,在带走一氧化硅气体的同时,可以使硅熔液部分热量向晶棒表面传输,减小了晶棒下端的边缘轴向温度差以及边缘轴向温度差与中心轴向温度差的差值,使其接近于理想值,有助于晶棒的无缺陷生长,晶棒上端快速冷却,使得晶棒快速度过缺陷形核长大的温度区间,最终制得高品质的晶棒。
31.本发明另一方面实施例还提供了一种单晶炉,所述单晶炉包括如上实施例所述的组合套筒。由于上述实施例中的组合套筒可以在保持硅熔液固、液气三相交界点稳定的前提下,保证惰性气体有序稳定地从硅熔液表面掠过,在带走一氧化硅气体的同时,可以使硅熔液部分热量向晶棒表面传输,减小了晶棒下端的边缘轴向温度差以及边缘轴向温度差与中心轴向温度差的差值,使其接近于理想值,有助于晶棒的无缺陷生长,晶棒上端快速冷却,使得晶棒快速度过缺陷形核长大的温度区间,最终制得高品质的晶棒,因此本发明实施例中的单晶炉也对应具有上述有益效果,为避免重复,在此不再赘述。
32.如图2所示,可选的,单晶炉包括坩埚和位于坩埚正上方的组合套筒,坩埚包括石墨坩埚8和石英坩埚7,坩埚中容置硅熔液8,组合套筒距离硅熔液8表面一定高度,组合套筒中的套管1的直径略大于晶棒6的直径,以允许晶棒6从其内部通过。
33.以上所述是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献