一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于热等静压工艺制备压电陶瓷的方法与流程

2022-02-20 16:28:23 来源:中国专利 TAG:


1.本发明涉及特种陶瓷制品制备技术领域,具体为一种基于热等静压工艺制备压电陶瓷的方法。


背景技术:

2.压电陶瓷是一种具有压电效应和逆压电效应的多晶体陶瓷,因其具有机械能和电能相互转换的特殊功能,在水下成像用1-3型压电复合材料换能器,超声领域(例如超声清洗、超声乳化、超声焊接、超声打孔等),电声器件(如拾音器、扬声器、送受话器、蜂鸣器、声级校准器、电子校表仪等),滤波器等国民经济和日常生活中具有广泛的应用前景。
3.目前,压电陶瓷主要采用传统的烧结工艺制备,该工艺存在如下问题:1.密实度不高,传统烧结工艺在大气压力的环境中烧结成型,坯料内部残留有孔洞。2.粘接剂排除不干净,在成型工序,为了能够良好的成型,需要加入高分子粘接剂并混合均匀,这些粘合剂在后续的排胶工序需要排除掉,但是存在排除不干净的情况,这些残留的粘接剂会对压电陶瓷的性能产生不良影响。3.粘接剂的还原作用,在排胶过程中如果工艺控制不当可能会引起粘接剂的还原作用,有时在排胶结束的成型坯料中会发现橙色或黑色物析出,这是氧化铅被还原造成的。4.成型坯料的断裂,在排胶工序中,由于水分和高分析有机物的挥发会引起坯料的断裂。5.铅的挥发,在烧成工序存在氧化铅挥发的问题,最终造压电陶瓷成品的化学计量比变化。


技术实现要素:

4.本发明的目的在于提供一种基于热等静压工艺制备压电陶瓷的方法,以解决上述背景技术中提出的问题。
5.为实现上述目的,本发明提供如下技术方案:一种基于热等静压工艺制备压电陶瓷的方法,其特征在于,包括一下步骤:步骤一:按一定比例的化学计量比称量相应的原料;步骤二:将称量完成的原料混合均匀;步骤三:将混合好的原料模压成块体,在500~900℃进行预烧处理;步骤四:将预烧完成的块体进行粉碎,过300目筛子;步骤五:将粉碎完成的的粉末装入橡胶包套中,进行冷等静处理;步骤六:将经过冷等静压预处理而形成的坯料放入铁制包套中,盖上带有脱气管的上盖,并将上盖与套体焊接;步骤七:对包套进行脱气,除气完成后封焊脱气管;步骤八:将脱气完成的包套进行热等静压处理;步骤九:将热等静压完成的锭坯加工成所需形状,并在表面制备银电极;步骤十:将样品放入100~200℃的硅油中,施加2000~6000v/mm电场极化10~90mi。
6.优选的,所述步骤一中,按照pb(zr
0.52
ti
0.48
)o3的化学计量比进行配料。
7.优选的,所述步骤二中,将原料放入滚筒式混料机中进行混合,球磨介质为蒸馏水和氧化锆球,1﹕2.5﹕2.5,球磨6小时,将球磨完成的料放入烘箱中在100℃烘烤去除水分。
8.优选的,所述步骤三中,将烘干的原料中加入5%的纯净水并混合均匀,然后将原料在模压机上压制成直径100mm,厚度10毫米的圆饼,将圆饼放入加热炉中,900℃保温4小时。
9.优选的,所述步骤四中,将预烧完成的坯料砸碎,然后放入滚筒混料机中并放入2.5倍重量的氧化锆球混合2小时,将预烧的坯料制成粉末并过300目筛子。
10.优选的,所述步骤五中,用铁丝扎紧胶套与胶塞,进行冷等静压处理,处理压强为150mpa,制成生坯。
11.优选的,所述步骤六中,冷等静压完成后,将胶套去除并取出生坯,然后将生坯放入预先准备好的碳钢包套中,盖上带有脱气管的上盖,并焊接套体与上盖儿的缝隙。
12.优选的,所述步骤七中,选用由机械泵和扩散泵组成的二级真空机组对包套进行脱气,脱气时需将包套放入加热炉中加热温度至450℃,真空度达到2
×
10-3
pa后保温6小时;脱气完成后对脱气管进行封焊。
13.优选的,所述步骤八中,将脱气完成的包套进行1100℃~1300℃,130mpa热等静压处理2h。
14.优选的,选用丝网印刷的方式在在压电陶瓷表面涂敷银浆,以5℃/min的升温速度升到800℃,保温15min。
15.有益效果本发明所提供的基于热等静压工艺制备压电陶瓷的方法,1.避免了传统烧结工艺制备压电陶瓷时,有机粘接剂残留而引起陶瓷压电性能降低的不良影响。2.避免了传统烧结工艺容易造成化学计量比不准确的问题,因为不添加有机添加剂,不会发生在脱胶过程中有机添加剂中碳引起氧化物还原,另一方面,本方法提出的制备工艺最终烧成是在密闭的高温环境中进行,不会引起铅的挥发。3.陶瓷粉末在高温高压的密闭环境中烧结成型,产品致密度高、无气孔等缺陷。高的密度明显提升了陶瓷的压电性能。而且还改善了陶瓷的力学性能,大大增加了压电陶瓷的服役周期和使用稳定性。这种具有高的力学性能的压电陶瓷,使得几十甚至十几微米厚度的压电陶瓷薄片的制备成为可能,在医疗用高清声学成像领域具有广阔的应用前景。4.避免了传统烧结工艺铅挥发引起的环境污染,本方法提出的工艺绿色环保。
附图说明
16.图1为现有技术中烧结工艺制备压电陶瓷工艺流程图;图2为基于热等静压工艺制备压电陶瓷工艺流图;图3为现有技术中烧结成型工艺制备pb(zr
0.52
ti
0.48
)o3压电陶瓷密度随成型温度的变化趋势图;图4为现有技术中烧结成型工艺制备pb(zr
0.52
ti
0.48
)o3压电陶瓷d
33
随成型温度的变化趋势图;图5为现有技术中烧结成型工艺制备pb
0.92
la0.08(zr
0.65
ti
0.35
)o3压电陶瓷密度随成型温度的变化趋势图;图6为现有技术中烧结成型工艺制备pb
0.92
la0.08(zr
0.65
ti
0.35
)o3压电陶瓷d
33
随成
型温度的变化趋势。
具体实施方式
17.以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
18.实施例1一种基于热等静压工艺制备压电陶瓷的方法,包括以下步骤:步骤(1)配料:按照pb(zr
0.52
ti
0.48
)o3的化学计量比进行配料。
19.步骤(2)原料混合:将步骤(1)称量好的原料放入滚筒式混料机中进行混合,球磨介质为蒸馏水和氧化锆球,1﹕2.5﹕2.5,球磨6小时,将球磨完成的料放入烘箱中在100℃烘烤去除水分。
20.步骤(3)预烧:将烘干的原料中加入5%的纯净水并混合均匀,然后将原料在模压机上压制成直径100mm,厚度10毫米的圆饼;将圆饼放入加热炉中,900℃保温4小时。
21.步骤(4)粉碎:将预烧完成的坯料用锤子砸碎,然后放入滚筒混料机中并放入2.5倍重量的氧化锆球混合2小时,将预烧的坯料制成粉末并过300目筛子。
22.步骤(5)冷等静压:将粉碎的原料放入橡胶包套中,盖上胶塞,用铁丝扎紧胶套与胶塞;进行冷等静压处理,处理压强为150mpa,制成生坯。
23.步骤(6)装套:冷等静压完成后,将胶套去除并取出生坯;然后将生坯放入预先准备好的碳钢包套中,盖上带有脱气管的上盖儿,并焊接套体与上盖儿的缝隙。
24.步骤(7)脱气封焊:选用由机械泵和扩散泵组成的二级真空机组对包套进行脱气,脱气时需将包套放入加热炉中加热温度至450℃,真空度达到2
×
10-3
pa后保温6小时;脱气完成后对脱气管进行封焊。
25.步骤(8)热等静压:将脱气完成的包套进行1100℃~1300℃,130mpa热等静压处理2h。
26.步骤(9)制备电极:选用丝网印刷的方式在在压电陶瓷表面涂敷银浆,以5℃/min的升温速度升到800℃,保温15min。
27.步骤(10)极化:将样品放入150℃硅油中,施加4500v/mm电场极化20min。
28.表1示出了传统烧结工艺和热等静压工艺制备压电陶瓷在不同温度下密度值;图3示出了传统烧结工艺和热等静压工艺制备压电陶瓷密度随温度变化趋势。
29.表2示出了传统烧结工艺和热等静压工艺制备压电陶瓷在不同温度下d
33
值。
30.图4示出了传统烧结工艺和热等静压工艺制备压电陶瓷d
33
随温度变化趋势。本实例中,传统烧结工艺是按照图1所示工艺流程图执行,其中预烧工艺为800℃,2h;烧成工艺为1100℃~1300℃,2h;制备电极及极化工艺同本实例中的热等静压工艺。
31.表1:不同温度成型时,两种成型工艺制备pb(zr
0.52
ti
0.48
)o3压电陶瓷的密度值(单位:g/cm3)。温度1100℃1150℃1200℃1250℃1300℃烧结工艺7.507.657.807.767.72热等静压7.807.857.917.927.92
32.表2:不同温度成型时,两种成型工艺制备pb(zr
0.52
ti
0.48
)o3压电陶瓷的d
33
值(单
位:pc/n)。温度1100℃1150℃1200℃1250℃1300℃烧结工艺180210317312240热等静压320363372375378
33.从表1和图3可以发现:(1)对于传统烧结工艺,随着温度的增加,密度先增加后减小,当温度达到1200℃时密度达到最大值7.8g/cm3。pzt的烧结主要依靠铅元素的扩散来完成,随着温度的升高,铅元素扩散速度加快促进了烧结密度的增加。但是,随着温度的升高,氧化铅的挥发会造成铅的损失从而造成密度的降低。(2)对于热等静压工艺制备压电陶瓷而言,在相同的温度和时间成型时,陶瓷密度明显高于普通传统工艺制备的陶瓷,这是因为采用热等静压工艺时,原料处于高达130mpa的三向等静压氩气环境中,在高压环境中粉末迅速密实且元素得到更充分扩散,从而制作的压电陶瓷更加密度。(3)而且热等静压工艺制备压电陶瓷,不会出现随温度升高密度降低的情况。这是因为采用热等静压工艺,原料处于高压密闭的环境中,不存在氧化铅由于挥发而损失的问题。
34.从表2和图4可以发现:(1)采用传统工艺制备的压电陶瓷,d
33
随着温度的升高先升高后降低,这是因为随着成型温度的升高压电陶瓷密度逐渐升高;而当温度再升高时,密度反而降低,以及氧化铅的挥发共同导致了d
33
的降低。(2)相同温度成型时,采用热等静压工艺制备的压电陶瓷d
33
明显高于传统方法制备陶瓷的d
33
,这是因为热等静压制备的陶瓷密度明显高于传统工艺制备陶瓷的密度。(3)采用热等静压工艺制备压电陶瓷时,d
33
并没有出现随着温度升高而降低的趋势,这是因为采用热等静压工艺制备压电陶瓷时,原料被封闭的密闭环境中,氧化铅无法挥发。
35.实施例2一种基于热等静压工艺制备压电陶瓷的方法,包括以下步骤:步骤(1)配料:按照pb
0.92
la0.08(zr
0.65
ti
0.35
)o3进行配料。
36.步骤(2)~(10)同实施例1。
37.表3示出了传统烧结工艺和热等静压工艺制备压电陶瓷在不同温度下密度值。图5示出了传统烧结工艺和热等静压工艺制备压电陶瓷密度随温度变化趋势。表4示出了传统烧结工艺和热等静压工艺制备压电陶瓷在不同温度下d
33
值。图6示出了传统烧结工艺和热等静压工艺制备压电陶瓷d
33
随温度变化趋势。本实例中,传统烧结工艺是按照图1所示工艺流程图执行,其中预烧工艺为800℃,2h;烧成工艺为1100℃~1300℃,2h;制备电极及极化工艺同热等静压工艺。
38.表3:不同温度成型时,两种成型工艺制备pb
0.92
la0.08(zr
0.65
ti
0.35
)o3压电陶瓷的密度值(单位:g/cm3)。温度1100℃1150℃1200℃1250℃1300℃烧结工艺7.647.717.617.277.20热等静压7.817.988.028.038.03
39.表4:不同温度成型时,两种成型工艺制备pb
0.92
la0.08(zr
0.65
ti
0.35
)o3压电陶瓷的d
33
值(单位:pc/n)。温度1100℃1150℃1200℃1250℃1300℃烧结工艺120140130122114
热等静压281320325331335
40.由以上两实例可以看出,通过热等静压工艺制备压电陶瓷可以得到密度更高,压电性能显著提升的压电陶瓷。
41.最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明性的保护范围之内的发明内容。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献