一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于柔性球体的防爆抗冲击结构及防爆抗冲击柔性球体制备方法与流程

2022-02-20 14:38:05 来源:中国专利 TAG:


1.本发明涉及一种防爆结构,具体涉及一种基于柔性球体的防爆结构,属于公共安全防务装备领域。


背景技术:

2.爆炸和冲击对于结构具有非常强的破坏作用,传统的防爆结构通常包括板材、圆筒、异型结构等。传统的防爆结构加工通常需要压制、切削、模具、注塑等工艺。在需要提高其防爆性能时,需要对其结构进行改进,则需要重新制定特定的工艺,而特定的工艺一般需要定制化设计和生产,从而会增加项目的成本和周期。
3.目前针对爆炸冲击的防护主要有软质结构和硬质结构两种。针对软质结构,通常采用液体、泡沫、纤维等等,其核心防爆的原理主要是将爆炸载荷的能量转化为软质结构的无害动能,形成能量的转化;针对硬质结构,通常采用硬质的混凝土、夹芯板、钢板等。其核心的防爆原理是将冲击波拦截,使之反弹回去。


技术实现要素:

4.有鉴于此,本发明提供一种基于柔性球体的防爆抗冲击结构,只需在传统防爆结构中填充柔性球体结构,便可提高结构的防护能力,且针对不同的防爆结构无需额外的增加多余的模具。
5.本发明的技术方案是:基于柔性球体的防爆抗冲击结构,当所述防爆抗冲击结构为柔性防爆结构时,在所述柔性防爆结构的封装层内部填充一层以上所述柔性球体;
6.当所述防爆抗冲击结构为硬质防爆结构时,将所述硬质防爆结构设计为具有空心夹层的结构,在所述空心夹层内填充一层以上所述柔性球体。
7.作为本发明的一种优选方式,所述柔性球体为采用耐水解硬质发泡材料固化而成的球体结构;其原料包含a组分和b组分,a组分与b组分重量比为1:1~1:2;
8.a组分为异氰酸酯;所述异氰酸酯为多亚甲基多苯基异氰酸酯papi和二环己基甲烷二异氰酸酯hmdi的混合物,其中重量份papi:hmdi=3:1~4:1;
9.b组分包含:聚醚多元醇a,30~50份;聚醚多元醇b,40~60份;聚醚多元醇c,10~20份;催化剂,0.5~3份;水,1~5份;物理发泡剂,5~15份;泡沫稳定剂,1~10份;
10.以上份数为重量份。
11.作为本发明的一种优选方式,所述柔性球体为内部具有球形多孔结构增强骨架的球体结构。
12.作为本发明的一种优选方式,所述多孔结构增强骨架采用尼龙为基体,增加碳纤维的材料。
13.作为本发明的一种优选方式,所述多孔结构增强骨架的直径是所述柔性球体直径的40%~80%。
14.作为本发明的一种优选方式,所述防爆抗冲击结构为柔性防爆桶,其外壳为采用柔性封装材料形成的环形结构;在所述柔性防爆桶筒壁内填充柔性球体后,进一步注入液体直至注满。
15.作为本发明的一种优选方式,所述防爆抗冲击结构为夹心波纹防爆板;所述夹心波纹板防爆板为两个波纹板层叠固接在一起形成的空心夹层结构,在所述空心夹层中填充一层以上所述柔性球体。
16.此外,本发明提供一种防爆抗冲击柔性球体制备方法:
17.步骤1:a组分的制备:将称量好的papi和hmdi混合搅拌均匀;
18.步骤2:b组分的制备:将称量好的聚醚多元醇a、聚醚多元醇b和聚醚多元醇c置于反应釜中搅拌,然后加入称量好的催化剂、水、物理发泡剂和泡沫稳定剂,于常温下混合搅拌均匀;
19.步骤3:将a组分与b组分按设定重量比配置后通过混合设备搅拌均匀,注入或喷涂入容器或模具中,固化后得到耐水解硬质发泡聚氨酯材料的球体。
20.此外,本发明提供内部具有多孔结构增强骨架的防爆抗冲击柔性球体制备方法:
21.步骤1:制备球形的多孔结构增强骨架;
22.步骤2:配置柔性球体的配料:
23.a组分的制备:将称量好的papi和hmdi混合搅拌均匀;
24.b组分的制备:将称量好的聚醚多元醇a、聚醚多元醇b和聚醚多元醇c置于反应釜中搅拌,然后加入称量好的催化剂、水、物理发泡剂和泡沫稳定剂,于常温下混合搅拌均匀;
25.步骤3:在球体模具中预先放置球形的多孔结构增强骨架,将a组分与b组分按设定重量比配置后通过混合设备搅拌均匀后注入球体模具中,使搅拌均匀后的配料填充多孔结构增强骨架内部并包裹其外部,由此固化后得到内部具有多孔结构增强骨架的柔性球体。
26.有益效果:
27.(1)在防爆结构中填充柔性球体,能够提高防爆抗冲击结构的防护能力;柔性球体为泡沫多孔球体结构,在制作时仅需要球体结构的模具,球体结构的模具相对简单,针对不同的方案设计无需额外的增加多余的模具,可大批量生产,自动化填充;尤其是方便针对防爆结构进行异型填充,可大幅度降低相应的成本。
28.(2)针对软质防爆结构,冲击波会进入到结构内部,将柔性球体填充到软质防爆结构内部,形成不同的波阻抗结构;由此冲击波在不同阻抗结构中传播会发生叫多次的反射和折射,从而形成能量的内耗,柔性球体由于具有弧形面,冲击波经过球体结构时,会发生一定的散射绕射作用,从而消耗一定的能量。此外球体结构为柔性,本身具有较好的能量吸收效率,同时破碎后不会对周围造成杀伤。柔性球体填充至防爆结构内后,球体与球体之间会形成一定的异型空腔,同时又能保证一定的空间有效利用率,避免空间死角。
29.针对硬质防爆结构,冲击波不会进入到结构内部,采用面板和背板是韧性和强度较高的金属面板,夹心层采用填充具有增强骨架的柔性球体。硬质防爆结构的面板可以自由设计,如以波纹板夹心结构为主体的防爆结构,其中填充的柔性球体通过内部的增强骨架可进一步提高其能量吸收效率。
附图说明
30.图1为基于柔性球体的软质防爆结构示意图;
31.图2为两种不同形式的具有结构增强骨架的柔性球体;
32.图3为基于柔性球体的夹心波纹板防爆结构示意图;
33.图4为不同的防护结构进行0.5m处冲击波压力测试的仿真曲线。
34.其中:1-外壳;2-柔性球体;3-液体;4-硬质发泡聚氨酯,5-多孔结构增强骨架,6-波纹板
具体实施方式
35.下面结合附图和实施例,对本发明做进一步的详细说明。
36.实施例1:
37.本实施例提供一种基于柔性球体的非金属(即软质防爆结构)。
38.如图1所示,该防爆结构为在传统的圆台形的非金属防爆桶的桶壁内填充柔性球体形成,具体的:
39.该防爆结构的外壳1采用非金属的封装材料形成的环形防护结构,如聚醚、pvc、泡沫材料等。考虑到底部冲击波反射压力会增加,故该环形防护结构的壁厚从上往下递增,即底部壁厚较大,顶部壁厚较小,形成一种圆台结构;此种圆台形防爆桶较传统的防护结构,冲击波超压能够下降20%以上。
40.在外壳1封装的圆台形的桶壁内填充多个柔性球体2,柔性球体2的直径为5mm~50mm,采用耐水解硬质发泡材料制备。本例中,柔性球体2采用耐水解聚氨酯制备;填充柔性球体2后,进一步的在桶壁内注入液体3直至注满。液体3以水为基体,可以添加功能性的防冻液、阻燃泡沫蛋白剂、纳米多孔材料等。
41.柔性球体2的制备原料包含a组分和b组分,其配方为:
42.a组分为异氰酸酯,异氰酸酯为多亚甲基多苯基异氰酸酯(papi)和二环己基甲烷二异氰酸酯(hmdi)按3:1混合而成。
43.b组分包括:聚醚三醇、乙二胺聚醚多元醇、聚四氢呋喃二醇、作为催化剂的二月桂酸二丁基锡、水、作为物理发泡剂的正戊烷以及作为泡沫稳定剂的有机硅均泡剂m158。其中各组分的重量份为:
[0044][0045]
a组分和b组分分别配置好后,按重量比1:1通过混合设备搅拌均匀,注入球形模具中;本例中,采用六种不同直径的球形模具,固化后得到六种不同直径的耐水解硬质发泡聚
氨酯小球结构,即柔性球体2。由以上配方制备的硬质泡沫聚氨酯,具有优异的耐水解性,可长时间浸泡于水中并保持力学性能和尺寸稳定性。
[0046]
将柔性球体2按照直径大小分别放置到圆台形防爆抗冲击结构的桶壁内,防爆抗冲击结构的下方并列设置两列柔性球体2,由此在厚度方向上形成双层柔性球体2,双层柔性球体2具有更强的抗爆能力;上方设置单列直径较大的柔性球体2。填充完柔性球体2后,通过外壳1的顶部液体灌口进行液体3的注入,液体3采用水为基体,添加纳米多孔材料和阻燃泡沫蛋白剂;添加完液体3后将灌口封堵即可。
[0047]
由此形成的防爆结构具有液相和固相可压缩相的结构,具有优异的冲击波吸收能力。第一,液体3具有良好的动量提取效应,能够将爆炸冲击波转化为液体的动能,并且由于采用聚氨酯填充(即柔性小球)的结构,在爆炸的瞬间,液体结构更易破碎,从而液珠飞散的更加均匀,雾化的更加彻底,并且由于液珠均匀,减少了因为液体飞散产生的大块水射流对周围造成的二次杀伤。第二,聚氨酯泡沫是一种多孔材料,在爆炸瞬间,液体进入多孔结构中,从而消耗部分的能量。第三,聚氨酯泡沫是一种多孔材料,在爆炸瞬间,多孔材料本身可破碎吸能。第四,由于聚氨酯泡沫与液体结构密度不一致,形成不同的阻抗结构,从而冲击波将会发生多次的反射和折射,波峰将会打散,不连续,从而减少了冲击波对其他结构的作用。
[0048]
如图4所示,使用仿真软件(ansys/autodyn)对不同的防护结构进行0.5m处冲击波压力的测试;防爆结构均采用空心圆柱形结构,厚度为20mm,高度为200mm,内径为100mm,炸药采用c4炸药30g,放置在圆柱形结构中心处,采用上端起爆。所有工况中防护结构厚度和高度一致,在该圆柱形防爆结构的基础上采用以下五种防爆方案:
[0049]

空爆(圆柱形防爆桶桶壁内为空气);

纯液体结构(圆柱形防爆桶桶壁内填充液体);

纯聚氨酯结构(圆柱形防爆桶桶壁内填充圆柱形聚氨酯);

柔性球体填充结构(圆柱形防爆桶桶壁内填充双层10mm聚氨酯小球);

柔性球体 液体防护结构(圆柱形防爆桶桶壁内填充聚氨酯小球后进一步注入液体直至注满)。
[0050]
表1计算结果
[0051][0052]
可以看出,在同样厚度的条件下,采用柔性球体 液体结构具有最高的冲击波压力峰值单位重量降低率,相较于传统的纯液体防爆结构,能够提升50%的防爆效率。同时,采用柔球体填充式的结构较纯聚氨酯的结构,防爆效率并没有下降很多,但是无需多余模具,节约了成本。
[0053]
实施例2:
[0054]
本实施例提供一种基于柔性球体的硬质防爆结构-抗爆板,该抗爆板采用夹心结构,通过填充柔性球体2和采用增强结构(波纹板),达到提高能量吸收的作用。即本实施例
提供一种基于柔性球体的夹心波纹板防爆结构。
[0055]
如图3所示,夹心波纹板防爆结构为两个波纹板7层叠焊接在一起形成的空心夹层结构,夹心波纹板爆结构较常规的平板式防爆结构具有更强的防爆作用,为进一步提升其防爆抗冲击能力,在其空心夹层内部填充柔性球体2;所填充的柔性球体2可以是大小一致的球体,也可以是大小不一致的球体;填充大小不一致的球体能够提升结构填充率,能量吸收更高;而填充大小一致的球体,可以采用自动化设备进行填充,提高填充效率,减少小球模具,节约成本。
[0056]
本例中的柔性球体2采用如图2所示的具有多孔结构增强骨架5的小球,提高能量吸收效率;其制备方法为:
[0057]
首先通过注塑机制备球形的多孔结构增强骨架5,注塑增强骨架可以以尼龙、abs、pp、pvc、pc等硬质树脂中的一种或者多种混合。多孔结构增强骨架5可以为由多个多边形框架结构围成的球形骨架,也可以是球面上均布圆孔的球形骨架。多孔结构增强骨架5可以为c60注塑结构骨架,优选的,骨架采用尼龙为基体,增加碳纤维的材料,增加碳纤维材料是增加结构的刚度和冲击吸能效果。
[0058]
然后配置柔性球体2的配料,柔性球体2的制备原料包含a组分和b组分,其配方为:
[0059]
a组分为异氰酸酯,异氰酸酯为多亚甲基多苯基异氰酸酯(papi)和二环己基甲烷二异氰酸酯(hmdi)按设定比例混合而成,papi:hmdi=4:1。
[0060]
b组分包括:聚醚三醇、乙二胺聚醚多元醇、聚四氢呋喃二醇、作为催化剂的二甲基乙醇胺、水、作为物理发泡剂的环戊烷以及作为泡沫稳定剂的泡沫稳定剂f-8805。其中各组分的重量份为:
[0061][0062]
由以上配方制备的硬质泡沫聚氨酯,具有优异的抗冲击吸能效果。a组分和b组分分别配置好后,按重量比1:2通过混合设备搅拌均匀,注入小球模具中,小球模具中预先放置球形的多孔结构增强骨架5,且小球模具与球形的多孔结构增强骨架5间有间隙,由此配料填充多孔结构增强骨架5内部并包裹其外部,固化后得到内部填充有硬质发泡聚氨酯4且外部包裹有硬质发泡聚氨酯4的多孔骨架结构小球,优选的,多孔结构增强骨架5的直径是所得到的柔性球体直径的40%~80%。
[0063]
在封装两个波纹板6前,将柔性球体2填充到两个波纹板6的夹层中,可根据实际使用工况,调节两层波纹板6之间的间隙。
[0064]
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,
在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献