一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种双炔桥联型一维线状或二维网状有机储能材料及其制备方法和应用与流程

2022-02-20 14:34:48 来源:中国专利 TAG:


1.本发明涉及一种有机储能材料,具体涉及一种双炔桥联型一维材料或二维网状有机储能材料,还涉及一种双炔桥联型一维材料或二维网状有机储能材料的制备方法和在钠离子电池中的应用,属于储能材料技术领域。


背景技术:

2.随着便携式电子产品性能的不断提升以及新能源汽车的快速发展,对电池储能特性的需求也越来越高。其中,有机钠离子电池(osibs)使用环境友好的有机材料作为电极,基于材料结构设计简单、理论比容量大、阳离子半径限制小等优点使其成为钠离子电池研究的一个重要方向。此外,有机电极材料具有无机化合物不易获得的优点:材料来源广泛且具有可再生性,结构能进行多样化构筑,制备过程无高温能耗且低co2排放,分子结构柔软易于进行柔性器件设计等。因此,利用有机物原料优势,开发储能性能优异的有机储钠材料,对扩展有机资源增值应用,降低电极材料的生产能耗与碳排放,具有重要的意义。
3.目前,关于有机储钠电极材料研究的主要类型有:c=o结构化合物、n-o
·
结构衍生物和c=n结构材料,在储能机制方面,其中前两者是n-型有机物,而后者是两极型材料。与此同时,共轭胺、有机金属聚合物等部分p-型有机材料在钠离子电池中也有部分相应的报道。尽管如此,大部分有机电极材料在实际开发中仍然存在着一些共性难题,其中最突出的就是材料在电解液中溶解性高,电导率低(10-10
~10-5
s cm-1
)。
4.总的来说,有机电极材料的分子结构和聚集态特征易于实现个性化定制,原材料来源广泛且具有再生性,是能源化学中重要的研究方向。溶解性高和导电性差是大部分有机小分子存在的固有缺陷,尽管有机聚合电极材料可以有效地克服溶解性的问题,但是其导电性和实际比容量相对较低的问题,成为制约此类材料发展的关键。目前报道的c6环稠合化合物具有较好的比容量,可是c6稠合结构之间较强的范德华力常造成电极材料的不可逆团聚,同时材料导电性也不高。因此,通过设计和开发新的环稠合化合物来增强材料导电性的同时提高其稳定的比容量,为进一步发展有机电极材料的可行策略,到目前为止,现有技术中还没有相关报道。


技术实现要素:

5.针对现有技术存在的缺陷,本发明的第一个目的是在于提供一种由环八四杂环与双炔基桥联构成的一维线状有机储能材料,该材料中环八四杂环的稠环结构在得失电子过程中发生平面与马鞍型结构转化,可以克服分子层间的π-π相互作用,且稠环结构通过双炔基桥联,具有良好的导电性以及高氧化还原稳定性。
6.本发明的第二个目的是在于提供一种由环八四杂环与双炔基桥联构成的二维网状有机储能材料,该材料中环八四杂环的稠环结构在得失电子过程中发生平面与马鞍型结构转化,可以克服分子层间的π-π相互作用,且稠环结构通过双炔基桥联,具有良好的导电
性以及高氧化还原稳定性,且二维网状结构赋予了材料具有较大的孔隙,有利于离子与电子的传输。
7.本发明的第三个目的是在于提供一种制备双炔桥联型一维线状或二维网状有机储能材料的方法,该方法简单、条件温和,有利于大规模生产。
8.本发明的的四个目的是在于提供一种双炔桥联型一维线状或二维网状有机储能材料作为负极材料在钠离子电池中的应用,可以获得比容量高,循环性能较好的钠离子电池。
9.为了实现上述技术目的,本发明提供了一种双炔桥联型一维线状有机储能材料,其具有式1所示重复结构单元:
[0010][0011]
其中,
[0012]
ar为以下结构单元:
[0013][0014][0015]
x为o、s或se。
[0016]
本发明提供的双炔桥联型一维线状有机储能材料是由八元稠环结构通过双炔基桥联得到,这些环八四杂环的八元稠环结构引入了大量的杂原子,具有较高的电导率的特点,且在得失电子过程中能够发生平面与马鞍型结构转化,具有电化学伸缩结构特性,可以克服分子层间的π-π相互作用,且八元稠环结构通过双炔基桥联,具有良好的导电性以及高氧化还原稳定性。
[0017]
本发明还提供了一种双炔桥联型二维网状有机储能材料,其具有式2所示重复结构单元:
[0018][0019]
其中,
[0020]
ar为以下结构单元:
[0021][0022]
x为o、s或se。
[0023]
本发明提供的双炔桥联型二维网状有机储能材料是由八元稠环结构通过双炔基桥联得到,这些环八四杂环的八元稠环结构引入了大量的杂原子,具有较高的电导率的特点,且在得失电子过程中能够发生平面与马鞍型结构转化,具有电化学伸缩结构特性,可以克服分子层间的π-π相互作用,且八元稠环结构通过双炔基桥联,具有良好的导电性以及高氧化还原稳定性,八元稠环结构通过双炔基桥联形成平面网状结构具有类石墨的结构,有利于电子的传输,且具有均一孔道,有利于离子在材料内部的传输,能够实现储能过程中的快充快放。
[0024]
本发明还提供了一种双炔桥联型一维线状有机储能材料的制备方法,其包括以下步骤:
[0025]
1)将coth与nis进行取代反应,得到二碘代coth;所述coth与所述nis的摩尔比为1:2~1:4。
[0026]
2)将二碘代coth与三甲基硅乙炔通过sonogashira偶联反应后,再脱除三甲基硅基,得到二炔基coth;
[0027]
3)将二炔基coth通过eglinton反应,即得;
[0028]
所述coth选自以下化合物:
[0029][0030]
所述二碘代coth具有以下结构式:i-ar-i;
[0031]
所述二炔基coth具有以下结构式:
[0032]
其中,ar以下结构单元:
[0033][0034]
x为o、s或se。
[0035]
作为一个优选的方案,所述取代反应的条件为:温度为5~80℃,时间为6~24小时。
[0036]
作为一个优选的方案,所述sonogashira偶联的条件为:温度为10~70℃,时间为5~20小时。
[0037]
作为一个优选的方案,所述脱除三甲基硅基的条件为:温度为10~75℃,时间为1~8小时。
[0038]
作为一个优选的方案,eglinton反应的条件为:温度为15~80℃,时间为5~24小时。
[0039]
本发明还提供了一种双炔桥联型二维网状有机储能材料的制备方法,其包括以下步骤:
[0040]
1)将coth与nis进行取代反应,得到四碘代coth;coth与nis的摩尔比为1:4~1:8。
[0041]
2)将四碘代coth与三甲基硅乙炔通过sonogashira偶联反应后,再脱除三甲基硅基,得到四炔基coth;
[0042]
3)将四炔基coth通过eglinton反应,即得;
[0043]
所述coth选自以下化合物:
[0044]
[0045]
所述四碘代coth具有以下结构式:
[0046]
所述四炔基coth具有以下结构式:
[0047]
其中,
[0048]
ar为以下结构单元:
[0049][0050]
x为o、s或se。
[0051]
作为一个优选的方案,所述取代反应的条件为:温度为5~80℃,时间为6~24小时。
[0052]
作为一个优选的方案,所述sonogashira偶联的条件为:温度为10~70℃,时间为5~20小时。
[0053]
作为一个优选的方案,所述脱除三甲基硅基的条件为:温度为10~75℃,时间为1~8小时。
[0054]
作为一个优选的方案,eglinton反应的条件为:温度为15~80℃,时间为5~24小时。
[0055]
本发明还提供了一种双炔桥联型一维线状或二维网状有机储能材料的应用,其作为钠离子电池负极材料应用。
[0056]
本发明的coth是由噻吩环、呋喃环、硒吩环或噻唑环等五元环之间通过α位与β位相连或β位与β位相连形成八元稠环结构,具有以下不同组合形式:
[0057][0058]
这种八元稠环结构得失电子可以发生平面与马鞍型结构转化,具有电化学伸缩结构特性,具体如下:
[0059][0060]
本发明通过扩展维度结构来调节其伸缩特性,例如一维线性结构或二维网状结构。
[0061]
一维线性结构例如:
[0062][0063]
二维网状结构材料例如:
[0064][0065]
相对现有技术,本发明技术方案带来的有益技术效果:
[0066]
本发明提供的双炔桥联型一维线状有机储能材料为π共轭聚合物,且引入大量的杂原子,其具有较高的电导率,且环八四杂环的八元稠环结构在得失电子过程中能够发生平面与马鞍型结构转化,具有电化学伸缩结构特性,可以克服分子层间的π-π相互作用,八
元稠环结构通过双炔基桥联形成平面网状结构具有类石墨的结构,有利于电子的传输,特别适合作为储能材料。
[0067]
本发明提供的双炔桥联型二维网状有机储能材料是由八元稠环结构通过双炔基桥联得到,这些环八四杂环的八元稠环结构引入了大量的杂原子,具有较高的电导率的特点,且在得失电子过程中能够发生平面与马鞍型结构转化,具有电化学伸缩结构特性,可以克服分子层间的π-π相互作用,且八元稠环结构通过双炔基桥联,具有良好的导电性以及高氧化还原稳定性,八元稠环结构通过双炔基桥联形成平面网状结构具有类石墨的结构,有利于电子的传输,且具有均一孔道,有利于离子在材料内部的传输,能够实现储能过程中的快充快放。
[0068]
本发明提供的双炔桥联型二维网状有机储能材料相对双炔桥联型一维线状有机储能材料能够进一步降低氢含量,且使得结构平面化,进一步改善材料的导电性,同时二维结构的有机储能材料能够克服传统有机材料储能过程中,易溶解而发生穿梭的缺点。
[0069]
本发明提供的双炔桥联型一维线状有机储能材料和二维网状有机储能材料的电导率为1.0
×
10-4
sm-1
~3.0
×
10-2
sm-1
,双炔桥联型一维线状有机储能材料的导电率约为10-4
sm-1
,而双炔桥联型二维网状有机储能材料的电导率约为10-2
sm-1

附图说明
[0070]
图1为本发明实施例1制备的四碘代环八四噻吩的合成(α,β-β,β-coth-1)的1hnmr图。
[0071]
图2为本发明实施例2制备的四碘代环八四噻吩的合成(α,β-coth-1)的1hnmr图。
[0072]
图3为本发明实施例3制备的四(三甲基硅基)乙炔基环八四噻吩(α,β-β,β-coth-2)的1hnmr图。
[0073]
图4为本发明实施例3制备的四乙炔基环八四噻吩的1hnmr图。
[0074]
图5为本发明实施例4制备的(α,β-coth-2)的1hnmr图。
[0075]
图6为本发明实施例7制备的二碘代环八四噻吩的1hnmr图。
[0076]
图7为本发明实施例5制备的α,β-β,β-coth基二维材料的电镜图。
[0077]
图8为本发明实施例6制备的α,β-coth基二维材料的电镜图。
[0078]
图9为本发明实施例6制备的α,β-coth基二维材料的合成路线。
[0079]
图10为本发明实施列8组装的纽扣电池的循环性能图。
具体实施方式
[0080]
以下结合实施例对本发明内容作进一步说明,而不会形成对本发明保护范围的限制。
[0081]
实施例1
[0082]
四碘代环八四噻吩的合成(α,β-β,β-coth-1):
[0083]
取α,β-β,β-coth(50mg,0.081mmol)加入于50ml schlenk瓶中,加入8ml ch2cl2溶解,再加入1mlhoac,置于油浴锅中,避光。称取nis(84mg,0.364mmol),快速倒入schlenk反应瓶中,打开加热,设置温度为50℃,避光搅拌8h。用乙醇与石油醚离心洗涤后得到土黄色固体材料。
[0084]
实施例2
[0085]
四碘代环八四噻吩的合成(α,β-coth-2):
[0086]
取α,β-coth(50mg,0.08mmol)加入于50mlschlenk瓶中,加入8ml ch2cl2溶解,再加入1mlhoac,置于油浴锅中,避光。称取nis(84mg,0.36mmol),快速倒入schlenk反应瓶中,打开加热,设置温度为50℃,避光搅拌8h。用乙醇与石油醚离心洗涤后得到白色固体材料。
[0087]
实施例3
[0088]
四(三甲基硅基)乙炔基环八四噻吩的合成(α,β-β,β-coth-2):
[0089]
抽取三甲基硅基乙炔(0.21ml,1.44mmol)与无氧三乙胺(0.15ml,1.08mmol),注入无水无氧thf(40ml)。称取α,β-β,β-coth-1(200mg,0.24mmol),cui(9.14mg,0.048mmol),pd(pph3)2cl2(33.69mg,0.05mmol)倒入100ml schlenk反应瓶中,置换氩气。用针筒抽取thf混合溶液注入schlenk反应瓶中,再转移到50℃油浴锅中搅拌12h。用20ml去离子水洗涤,重复3次,收集有机相,水相继续用20ml二氯甲烷萃取,重复3次。将有机相用无水硫酸镁干燥、真空浓缩。真空蒸发溶剂后,以石油醚:二氯甲烷=6:1为洗脱剂对粗产物进行柱层析得浅黄色固体材料。
[0090]
四乙炔基环八四噻吩的合成:将30mg浅黄色固体材料加入100ml圆底烧瓶中,加入二氯甲烷溶解。向圆底烧瓶中注入1ml tfa,室温搅拌3h。洗涤,萃取,纯化后得到黄色固体。
[0091]
实施例4
[0092]
四(三甲基硅基)乙炔基环八四噻吩的合成(α,β-coth-2):
[0093]
抽取三甲基硅基乙炔(0.32ml,2.17mmol)与无氧三乙胺(0.225ml,1.62mmol),注入无水无氧thf(40ml)。称取四碘代环八四噻吩(300mg,0.36mmol),cui(13.71mg,0.72mmol),pd(pph3)2cl2(50.53mg,0.07mmol)倒入100mlschlenk反应瓶中,置换氩气,用针筒抽取thf混合溶液注入schlenk反应瓶中,再转移到50℃油浴锅中搅拌12h。用20ml去离子水洗涤,重复3次,收集有机相,水相继续用20ml二氯甲烷萃取,重复3次。将有机相用无水硫酸镁干燥、真空浓缩。真空蒸发溶剂后,以石油醚:二氯甲烷=6:1为洗脱剂对粗产物进行柱层析得浅黄色固体材料。
[0094]
四乙炔基环八四噻吩的合成:将30mg浅黄色固体材料加入100ml圆底烧瓶中,加入二氯甲烷溶解。向圆底烧瓶中注入1ml tfa,室温搅拌3h。洗涤,萃取,纯化后得到黄色固体。
[0095]
实施例5
[0096]
二维材料的制备(2d-α,β-β,β-coth):
[0097]
取10ml吡啶将四炔基环八四噻吩(30mg,0.07mmol)溶解,转移到50ml schlenk反应瓶中。将醋酸铜(322mg,1.77mmol)加入其中,再加入10ml甲醇,氩气氛围下,将schlenk反应瓶转移到50℃油浴中搅拌24h。洗涤后得到棕黑色固体。
[0098]
经检测,该二维材料的电导率约为2.1
×
10-2
sm-1

[0099]
实施例6
[0100]
二维材料的制备(2d-α,β-coth):
[0101]
取10ml吡啶将tea-α,β-coth(30mg,0.071mmol)溶解,转移到50ml schlenk反应瓶中。将醋酸铜(322mg,1.77mmol)加入其中,再加入10ml甲醇,氩气氛围下,将schlenk反应瓶转移到50℃油浴中搅拌24h。洗涤后得到棕黑色固体。
[0102]
经检测,该二维材料的电导率约为2.0
×
10-2
sm-1

[0103]
实施例7
[0104]
二碘代环八四噻吩的合成:
[0105]
取α,β-β,β-coth(50mg,0.081mmol)加入于50ml圆底烧瓶中,加入8ml ch2cl2溶解,再加入1mlhoac,置于5℃水浴锅中,避光。称取nis(37.1mg,0.166mmol),快速倒入圆底烧瓶中,避光搅拌2h。用10ml去离子水洗涤,重复3次,收集有机相,水相继续用10ml二氯甲烷萃取,重复3次。将有机相用无水硫酸镁干燥、真空浓缩。真空蒸发溶剂后,以石油醚为洗脱剂对粗产物进行柱层析得浅黄色固体材料。
[0106]
二(三甲基硅基)乙炔基环八四噻吩及二乙炔基环八四噻吩的合成:参照实施例3(三甲基硅基乙炔及催化剂用量为实施例3一半,其他条件相同)。
[0107]
一维材料的制备:参照实施例5(催化剂用量为实施例5一半,其他条件相同)。
[0108]
经检测,该二维材料的电导率约为1.4
×
10-4
sm-1

[0109]
实施例8
[0110]
电化学测试:
[0111]
通过二维活性材料(实施例5),乙炔黑和聚偏氟乙烯(pvdf)以质量比为6:3:1在n-甲基-2-吡咯烷酮(nmp)中调成浆,涂覆在铜箔上,在真空干燥箱中以80℃的温度烘干过夜。裁成直径为10mm的极片,在水氧含量低于0.01mmp的氩气气氛的手套箱中组装成cr2016纽扣电池,玻璃纤维(whatman)作为隔膜,钠片作为参比电极,1m naclo4inec:dmc=1:1vol%作为电解质,恒流充放电在电压范围为0.01~2.5v下使用蓝电测试系统进行测试。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献