一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种处理含油污水用耐菌型易再生纤维材料的制备方法与流程

2022-02-19 13:05:22 来源:中国专利 TAG:


1.本发明属于纤维材料的制备方法领域,具体来说涉及一种处理含油污水用耐菌型易再生纤维材料的制备方法。


背景技术:

2.纤维材料做为柔性滤料材质在处理含油污水方面具有明显的优势。纤维过滤材料相比于传统的过滤介质,如石英砂、活性炭、核桃壳等其最大特点就是质地轻、滤料比表面积大、截污能力强以及出水水质高等特点。近些年纤维材料作为处理含油污水的过滤材质受到了广泛关注,如南京工业大学催升教授课题组近期发表了《超疏水聚丙烯纤维/sio2气凝胶复合材料的制备及吸油性能》的研究论文,以聚丙烯纤维为增强相,与sio2进行复合,制备了具有超疏水能力的聚丙烯纤维/sio2气凝胶复合材料,其对各类油吸附倍率最高可达7.54倍,且具有一定的循环使用效率。天津理工大学户岐飞等发表了《疏水亲油苎麻纤维吸油材料的制备及其性能》研究论文,以苎麻为基质,采用溶胶凝胶法对其进行疏水亲油改性并研究其吸附性能。通过改性,材料的最大吸水倍率由10.14g/g降低至0.21g/g,对润滑油、原油的最大吸油量分别达到15.61,18.03g/g。
3.但在处理含油污水过程中,亲油材料虽然具有良好的吸油性能,但吸油后,油脂很难从纤维材料表面脱离,再生过程复杂,导致材料重复利用困难,使用成本高昂,不利于工业上大规模推广。且工业用水绝大部分为循环使用,在使用过程中细菌滋生严重,容易致使纤维过滤材料表面受到细菌的破坏而失去作用。目前所报道的处理含油污水的纤维材料中尚无耐菌型纤维材料。本发明通过对纤维材料的表面处理,设计开发了具有抑制细菌生长且同时具有易再生能力的纤维材料。


技术实现要素:

4.针对现有材料性能的不足,本发明的目的在于提供一种处理含油污水用耐菌型易再生纤维材料的制备方法。通过本方法所获得的纤维材料具有良好的再生能力,纤维材料过滤含油污水中的油脂后,可以通过简单的手段实现材料再生,以重复利用。本发明所述及的纤维材料是用于过滤含油污水的滤料,本发明所述及的易再生是指这种纤维材料用于过滤含油污水后,油脂附着在纤维表面,在某些条件下,油脂能脱离表面,而使纤维材料恢复到原来的状态。本发明所述及的能耐菌是指纤维材料浸没于含菌的污水中,在一定长的时间内,依然能保持再生的能力。本发明的另外一个优势是制备方法绿色环保,不使用交联剂等助剂。
5.本发明的目的是通过下述技术方案予以实现的。
6.一种处理含油污水用耐菌型易再生纤维材料的制备方法,包括以下步骤:将纤维材料与有机溶剂在常温下进行充分混合,充分混合后去除有机溶剂,进一步将纤维材料在常温下与无水乙醇进行充分混合,充分混合后去除无水乙醇,进一步将纤维材料在常温下与去离子水进行充分混合,充分混合后去除去离子水,并通过加热至110℃
烘干2h去除多余的水分。
7.将纤维材料与一定浓度的碱性溶液混合,混合均匀后升温至50~90℃,保温反应0.5~3h,静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤纤维材料,烘干备用。
8.配制一定浓度的氨基环糊精溶液,并将溶液预热至80℃。将碱性溶液处理过的纤维材料与预热至80℃的氨基环糊精溶液充分混合,混合均匀后升温至90~120℃,保温反应2~6h,静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤纤维材料,烘干。
9.在上述技术方案中,所述的纤维材料为聚酯纤维材料。
10.在上述技术方案中,所述有机溶剂为二氯甲烷、三氯甲烷或丙酮中的一种或几种组合物。
11.在上述技术方案中,所述的碱性溶液为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾,氢氧化钠、氢氧化钾中的一种或者几种混合物的水溶液。
12.在上述技术方案中,所述的碱性溶液的ph值为11~13.5之间,其中优选11.5~12.5之间。
13.在上述技术方案中,所述的氨基环糊精溶液是由以下分子中的一种所配制的水溶液:胺乙基

β

环糊精、胺丙基

β

环糊精、胺丁基

β

环糊精、单
‑6‑
脱氧
‑6‑
氨基

β

环糊精、单(6

乙二胺

去氧)

β

环糊精、单(6

丙二胺

去氧)

β

环糊精、单(6

丁二胺

去氧)

β

环糊精。
14.在上述技术方案中,所述的氨基环糊精溶液浓度为0.1~5wt%,其中优选0.3~3wt%之间。
15.在上述技术方案中,所述的纤维材料的质量与氨基环糊精溶液的质量比为1:50~1:500。
16.本发明提供了一种具有特殊性能的聚酯纤维材料的制备方法,这种聚酯纤维材料作为处理含油污水的滤料具有易再生,能耐菌的特性。有利于降低含油污水处理成本。
附图说明
17.图1为聚酯纤维材料改性前sem表面形貌;图2为实施例1所获得的耐菌型易再生纤维sem表面形貌;图3为其他方法所获得的改性聚酯纤维材料与本发明中案例1、案例2、案例3所获得的耐菌型易再生纤维材料耐菌性能对比。
具体实施方式
18.下面结合具体实施例进一步说明本发明的技术方案。
19.实施例1取丝状聚酯纤维材料6.0g,扎成球状,投入装有265g二氯甲烷的烧杯中,在常温下充分浸泡30min后过滤,去除二氯甲烷,并吹干。将上一步获得的纤维材料投入装有180g无水乙醇的烧杯中,在常温下充分浸泡30min后过滤,去除无水乙醇,并吹干。将上一步获得的纤维材料投入装有200g去离子水的烧杯中,在常温下充分浸泡30min后过滤,去除水分。将纤维材料放入鼓风干燥箱中,加热至110℃烘干2h去除多余的水分。
20.配制碳酸钠水溶液,并调节ph值至11.5,取此溶液300g于烧杯中,加入经过处理并
已经烘干的纤维材料5.0g,加热溶液至90℃,保温反应3h。后静置冷却至室温,过滤,收集纤维材料,并用去离子水洗涤,烘干。
21.取胺乙基

β

环糊精6.0g加入194g去离子水,充分搅拌后加热至80℃,获得质量分数为3%的胺乙基

β

环糊精水溶液。取上一步骤中所获得的纤维材料4.0g投入到胺乙基

β

环糊精水溶液中。将上述混合物置于高压反应釜中,加热使溶液升温至90℃,保温反应2h,静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤,烘干后,即获得耐菌型易再生纤维材料4.0g。
22.实施例2取丝状聚酯纤维材料6.0g,投入装有190g丙酮的烧杯中,在常温下充分浸泡30min后过滤,去除丙酮,并吹干。将上一步获得的纤维材料投入装有180g无水乙醇的烧杯中,在常温下充分浸泡30min后过滤,去除无水乙醇,并吹干。将上一步获得的纤维材料投入装有200g去离子水的烧杯中,在常温下充分浸泡30min后过滤,去除水分。将纤维材料放入鼓风干燥箱中,加热至110℃烘干2h去除多余的水分。
23.配制氢氧化钾水溶液,并调节ph值至12.5,取此溶液300g于烧杯中,加入经过处理并已经烘干的纤维材料5.0g,加热溶液至50℃,保温反应0.5h。后静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤纤维材料,烘干。
24.取单
‑6‑
脱氧
‑6‑
氨基

β

环糊精8.0g加入792g去离子水,充分搅拌后加热至80℃,获得质量分数为1%的单
‑6‑
脱氧
‑6‑
氨基

β

环糊精水溶液。取上一步骤中所获得的纤维材料4.0g投入到单
‑6‑
脱氧
‑6‑
氨基

β

环糊精水溶液中。将上述混合物置于高压反应釜中,加热使溶液升温至100℃,保温反应4h,静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤,烘干后,即获得耐菌型易再生纤维丝材料4.0g。
25.实施例3取丝状聚酯纤维材料6.0g,投入装有300g三氯甲烷的烧杯中,在常温下充分浸泡30min后过滤,去除三氯甲烷,并吹干。将上一步获得的纤维材料投入装有180g无水乙醇的烧杯中,在常温下充分浸泡30min后过滤,去除无水乙醇,并吹干。将上一步获得的纤维材料投入装有200g去离子水的烧杯中,在常温下充分浸泡30min后过滤,去除水分。将纤维材料放入鼓风干燥箱中,加热至110℃烘干2h去除多余的水分。
26.配制碳酸氢钠水溶液,并用氢氧化钠调节ph值至12,取此溶液300g于烧杯中,加入经过处理并已经烘干的纤维丝5.0g,加热溶液至70℃,保温反应1h。后静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤纤维材料,烘干。
27.取单(6

乙二胺

去氧)

β

环糊精6g加入1994g去离子水,充分搅拌后加热至80℃,获得质量分数为0.3%的单(6

乙二胺

去氧)

β

环糊精水溶液。取上一步骤中所获得的纤维材料4.0g投入到单(6

乙二胺

去氧)

β

环糊精水溶液中。将上述混合物置于高压反应釜中,加热使溶液升温至120℃,保温反应6h,静置冷却至室温,过滤,收集纤维材料,用去离子水洗涤,烘干后,即获得耐菌型易再生纤维丝材料4.0g。
28.对实施例1、2、3所得材料进行回潮率测试回潮率是材料中所含水分重量占干燥材料重量的百分数,是纤维材料吸湿程度的重要指标。回潮率数值的大小能直接反应纤维材料的亲水性能,回潮率越高,代表亲水性能越强。可以通过测定改性前后聚酯纤维的回潮率来判断纤维的改性效果,并可通过回潮率
的变化来反应纤维材料的再生性。根据实验研究,本纤维材料回潮率达到1.0%以上,材料即具有良好的再生性能。如表1所示,为改性前后纤维材料回潮率数值。
29.表1根据回潮率测试结果,实施例1、2、3所获得的纤维材料均具有良好的亲水性能。通过测试均具有良好的再生性。再生性测试过程如下:分别取实施例1、2、3所获得的耐菌型易再生纤维材料4g与2g润滑油充分接触,接触后的纤维材料分别投入装有400ml清水的烧杯中,静止观察,油脂从纤维表面逐渐脱离,静置10min后,油脂完全脱离纤维表面。重复上述步骤,纤维材料可实现再生500次以上。
30.对实施例1、2、3所得材料进行耐菌性能测试分别取实施例1、2、3所获得的耐菌型易再生纤维材料40g,以及无耐菌功能的易再生聚酯纤维材料40g,分别投入含有细菌的污水中浸泡,污水中细菌浓度分别为异氧菌含量1
×
106cfu/ml、铁细菌含量8
×
105cfu/ml、亚硝化菌含量6
×
105cfu/ml。每隔7天取样测试,分别测定浸泡0、7、14、28、35天后聚酯纤维材料的回潮率。结果如图3所示。通过分析可知,通过本发明方法所获得的聚酯纤维材料在含菌污水中浸泡30天以上依然保持较高回潮率。而相比之下,无耐菌功能的易再生聚酯纤维材料,在含菌污水中浸泡后,随着时间的延长,回潮率大幅下降。
31.以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献