一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

导电粘合剂的制作方法

2021-12-04 02:34:00 来源:中国专利 TAG:


1.本发明涉及导电粘合剂(eca)的领域,特别是用于光伏(pv)和能量存储应用(电池和超级电容器)的导电粘合剂的领域。


背景技术:

2.导电粘合剂已被开发用于电子设备,包括系统级封装(system

in

package)(sip)以及能量转换和存储模块中实现相互连接。事实上,它们构成了传统锡(sn)

铅(pb)基焊接的有吸引力的替代方案。此外,对于需要温度低于传统焊接(通常,sn

pb

基焊接要大于180℃)达到的温度的生产方案,eca也能够代表唯一可行的解决方案,这种情况可能发生于存在热敏性塑料材料和半导体的情况下。
3.在过去十年中,eca已在硅

基异质结太阳能电池(hjt

si)领域得到应用,其目前已实现卓越的能量转换效率(大于26%)。然而,与传统的晶体硅(c

si)

基模块相比,hjt

si模块的效率优势被实现hjt

si项目的金属化成本的大幅增加所抵消,因为要求大量的银膏浆(paste),其能够在低于200℃的温度下进行加工,与材料组分的热化学稳定性相容。
4.在hjt

si的设计中,eca通常用于太阳能组件内部的hjt连接,即多个太阳能电池集流器的连接。更详细而言,hjt由如下制成的堆叠层组成:晶体硅(c

si)层在两侧由氢化本征非晶硅(i

a

si:h)层钝化,由等离子增强化学沉积气相沉积法进行沉积。通过等离子体增强化学气相沉积,在两层i

a

si:h上分别沉积n型(n

a

si:h)和p型(p

a

si:h)氢化非晶硅的掺杂层。两层透明导电氧化物(tco)(通过物理气相沉积获得)分别沉积于n

a

si:h和p

a

si:h层上。两个丝网印刷的金属接触网格分别沉积于电池的tco层上。所述金属网格由垂直于“超薄”网格指(接触指)的矩形印刷条带(母线(busbar))组成。接触指(contact finger)的目的在于收集电池产生的电流并将其传输到母线。最后,铜(cu)

基导电带通过使用eca粘结至母线,而以机械和电气稳健性的可重复方式将电池连接于模块内。根据透视图来看,代替用银(ag)填充的传统的eca将导致现有hjt

si的金属化成本显著降低,从而能够达到低于0.4美元/件的生产成本(目前成本为0.48

0.56美元/件)。
5.使用潜在成本有效的eca不仅能够有利于hjt

si,也有利于所有其他类型的硅

基太阳能电池。显然,在c

si

基太阳能电池中,导体带通过将该带热焊接至母线而连接至母线代表刚性“冻结”连接,这会由于cu和si的热膨胀系数差异而产生机械应力。通常而言,在太阳能电池的金属化期间以及太阳能电池经受天气变化(温度波动)的运行中都会发生的热机械疲劳效应构成了欧姆功率损耗耗散并其中硅会开裂的“热点”,电触点中断和可能的电弧和火灾风险就可能发生。所有这些影响都将限制太阳能模块的耐用性并且将c

si晶片的最小“不可开裂”厚度限制为180μm,从而在实践中妨碍了太阳能电池的理论最低成本的实现。
6.eca的另一个新兴应用与钙钛矿(perovskite)太阳能电池(psc)相关;这些是光伏研究重点关注的混合无机

有机太阳能电池,因为它们的能量转换效率超过20%。从前景来看,这些能够通过低成本和可能低温(<100℃)液相工艺方法进行生产,这些工艺方法在经
济上是可接受的,并且与钙钛矿本身的热化学稳定性相容,钙钛矿本身在高于100/120℃的温度下会降解(取决于钙钛矿的类型)。不幸的是,最有效的psc会使用昂贵的金(au)电极。金属电极,包括金电极,目前已知会由于金属离子迁移效应而导致器件退化。开发可以替代au或其他金属并确保psc的效率和稳定性的低成本电极,对于此类太阳能电池技术以及相应钙钛矿太阳能模块(psm)的普及是至关重要的。此外,在低温(<100℃,包括室温)下处理上述eca的可能性将使它们在通过液相沉积技术(包括材料成型技术)生产psc的背景下独占鳌头(exclusive)。
7.最后,应用eca而机械和电气连接电子或电化学系统的串联组件,例如,电池单元或超级电容器内的电池电极。
8.目前关于eca实际使用可利用的大部分知识都是通过填充有ag的各向同性导电环氧树脂粘合剂(ica)获得的。氰酸酯、硅酮和聚氨酯也常被用作替代环氧树脂的热固性树脂,而镍(ni)和cu是导电填料,其用途已得到广泛认可。然而,这些金属的氧化会导致其初始电气性能的损失。此外,构成太阳能电池的材料中的金属离子迁移决定了填料重组位点的形成以及太阳能电池结构的劣化,从而降低用于太阳能电池的eca的整体性能。
9.us 20120145315描述了一种用于形成包含聚合物基质中的导电颗粒通路的各向异性导电聚合物体的生产工艺方法。在一个实施方式中,该基质能够是用于将太阳能电池的带连接至母线的粘合剂。具体而言,该导电颗粒能够是以球形碳黑(cb)颗粒或盘状或锥形碳纳米颗粒的形式。所述组合物的显著特征是0.1vol%

10vol%范围内的导电填料浓度。所使用的基质聚合物是能够通过紫外(uv)辐射固化的聚合物,并且该各向异性粘合剂通过施加电场而获得。
10.wo 2018/013342描述了对太阳能电池电极表面具有改进的粘合强度的导电粘合剂。所述粘合剂包含至少一种可过氧化物固化的弹性体和至少一种基于过氧化物的固化剂。导电颗粒一般能够选自金属和非金属颗粒,包括碳纳米管、石墨烯及其组合。
11.所描述的测试限于包含ag薄片的粘合剂。
12.cn 108384103描述了一种导电复合材料,其包含石墨烯、碳纳米管和碳黑作为导电组分,在具体配方中还含有环氧树脂、羟基丙烯酸树脂、固化剂、苯胺、纳米硅粉、白矿物油、磷酸氢锆、丙烯酸丁酯的乳液、n

甲基吡咯烷酮、聚四氟乙烯、聚偏二氯乙烯的乳液、十二烷基硫酸钠、乙烯

乙酸乙烯酯共聚物和大量铁盐(feso4.7h2o,fecl3.6h2o)。该文件报告了最佳情况下的电导率大于10
‑2s
·
m
‑1,其中石墨烯的重量分数大于5%;没有报道电导率的上限,而下限相对于用本发明的粘合剂获得的电导率值(约1000s
·
m
‑1数量级)要低约六个数量级。所引用的文献显示于以下比较实施例中的实施例3的重复生产已经证实,用这种制剂获得的复合材料是湿固体形式,并由单独的团块组成,这使得这种材料难以采用对于下面描述本发明的粘合剂组合物所述的沉积方法进行加工处理。此外,据发现,从实施例3获得的复合材料的电阻率为3.99ω
·
cm,这相对于采用根据本发明的组合物使用相同聚合物粘合剂(eva)获得的电阻率高约两个数量级。
13.此外,在下一代光伏器件的制造领域,还存在目前尚无满足的对具有改进的电性能和增强的可靠性的无金属导电粘合剂的需求。
14.本发明的目的是提供一种导电粘合剂组合物,该组合物不包含单质或离子形式(盐)的导电金属填料,并且在导电性、加工温度和附着力方面却具有最佳特性,适用于上述
用途,从而代替基于金属填料如cu和ag的传统导电粘合剂,或作为psc的唯一选择(根据其配方,在高于100/120℃的温度,即高于相容于钙钛矿热化学稳定性的温度下加工eca的不可能性)。


技术实现要素:

15.为此,本发明的一个目的是一种不含金属和金属盐的导电粘合剂组合物,正如所附权利要求定义。
16.本发明的另一个目的是制备上述粘合剂组合物的工艺方法。
17.本发明的进一步目的涉及粘合剂组合物用于将涂锡cu带连接至母线和用于生产钙钛矿型太阳能电池中的背电极的用途。
18.本发明的进一步特征和优点根据参照附图进行的以下描述而变得显而易见。
附图说明
19.在附图中:
20.‑
图1图示说明了使用扫描电子显微镜获得的根据本发明的粘合剂组合物(c

eva

eca

4)的图像,从嵌图a)

嵌图d)放大倍数逐渐增加;
21.‑
图2图示说明了作为不同粘合剂组合物的拉伸变形的函数的电阻图:
22.图2中a,与商业ag

基组合物(henkel)和比较组合物和c

eva

eca

3相比,粘合剂c

eva

eca

4和c

eva

eca

5(根据本发明)的作为拉伸变形的函数的归一化电阻;
23.图2中b,作为c

eva

eca

3(比较实施例)粘合剂的拉伸变形的函数的归一化电阻,其中横坐标刻度延伸至335%的拉伸变形(断裂点);
24.‑
图3图示说明了图2的粘合剂组合物的电阻作为温度函数的结果;
25.‑
图4是hjt

si太阳能电池的分层结构的示意图;
26.‑
图5是hjt/si太阳能电池中带/母线连接的示意图;
27.‑
图6是图示说明根据本发明,作为对于商业银

基粘合剂(henkel)和c

eva

eca

5组合物的样品施加电流的函数的接触电阻图;
28.‑
图7是具有基于根据本发明的粘合剂的背电极的psc的截面的图像,和
29.‑
图8是与比较实施例9中获得的材料(右侧)相比,使用c

eva

eca

4组合物(左侧)通过刮刀沉积的膜的照片。
具体实施方式
30.根据主权利要求,本发明的第一方面涉及可固化糊膏(paste,焊膏)或油墨形式的无金属eca组合物,其包含粘合剂聚合物组分和导电性碳

基组分,其特征在于各组分具有不同的拓扑形态。
31.在优选的实施方式中,该eca组合物是能够在低温,低于100℃,包括室温下加工的糊膏剂,其中术语“可加工的”表示通过刮刀或旋涂施加的可能性。
32.作为粘合剂聚合物组分,可以使用聚合物,其被称为太阳能电池密封剂。该聚合物组分能够选自聚乙烯

醋酸乙烯酯(eva)、聚烯烃弹性体(poe)、聚乙烯醇缩丁醛(pvb)、聚(丙烯酸)(paa)、(甲基丙烯酸甲酯)(pmma)和聚丙烯酸酯或商用聚丙烯酸酯混合物(例如,
hydrolac 610l,聚丙烯酸酯水分散体)。
33.该聚合物组分优选是通过乙烯与乙酸乙烯酯共聚得到的eva共聚物,其中乙酸乙烯酯含量为5wt%

50wt%,优选15wt%

45wt%。能够使用商业共聚物,如dupont(杜邦)的其商业品级通常具有9wt%

40wt%的醋酸乙烯酯含量。
34.本发明范围内使用的poe包含乙烯与各种单体如丙烯、丁烯、己烷和辛烯的共聚物。实际上,乙烯

辛烯和乙烯

丁烯是表现出优异弹性、介电性能和易加工性的商业产品。poe能够与不同聚合物,包括聚乙烯、聚丙烯和聚酰胺进行组合,从而调节该材料的特性。商业poe的实例包括35521p hlt(str)、engage
tm
(dow chemical)和tafmer
tm
(mitsui chemicals)。
35.eva和poe聚合物能够使用添加剂(例如,金属过氧化物)进行专门优化,以调节其熔点和/或其交联温度。
36.eva和poe聚合物对硅和金属(包括ag和cu)表面的附着力、机械弹性和优异机械和热疲劳抗性是本领域内众所周知的,并使这些材料成为pv领域内作为密封剂的技术标准。
37.碳

基导电组分是包含至少0d乙炔黑(或碳黑)纳米颗粒、1d碳纳米管和2d石墨烯或石墨烯衍生物的薄片或板(片)的混合物。石墨烯薄片优选通过描述于本技术人的wo 2017089987中的溶剂中湿喷射研磨剥离方法而获得。石墨烯衍生物包括还原的氧化石墨烯。
38.本发明基于实验支持,在本发明目的的粘合剂组合物中使用上述三种碳

基填料的混合物涉及体积电阻率的显著降低,达到允许使用该粘合剂组合物代替传统的基于金属填料的导电粘合剂组合物的值。
39.根据本发明,该导电组分包含:
40.‑
15wt%

45wt%,优选35wt%

45wt%的乙炔黑或碳黑颗粒,
41.‑
5wt%

25wt%,优选10wt%

20wt%的碳纳米管,
42.‑
35wt%

70wt%的石墨烯或石墨烯衍生物的薄片或板,优选35wt%

45wt%的石墨烯薄片,
43.上述百分比是指100重量份的所述导电组分。
44.与使用单一碳纳米材料相比,具有不同拓扑形态的碳纳米材料的组合显著提高了电性能;因此,通过改变碳纳米材料的重量比,能够调节本发明的eca目标物的电导率。
45.尽管对机理的解释不限制本发明的范围,但据信,石墨烯/石墨烯衍生物的薄片会提供石墨烯/石墨烯衍生物的薄片所涉及的优异导电性。乙炔黑纳米粒子填充了电连接的石墨烯/石墨烯衍生物薄片之间的空隙。碳纳米管创建连接由乙炔黑纳米颗粒和石墨烯薄片形成的紧凑导电结构域的高导电通路。
46.在糊膏(焊膏,paste)粘合剂中,根据以下数据,聚合物组分和导电组分相比于固含量的重量百分比能够根据eca的最终用途而变化:
47.‑
聚合物粘合剂组分5wt%

40wt%,
48.‑
导电成分60wt%

95wt%。
49.实验上,机械性能,如拉伸强度和断裂伸长率,随着粘合剂组分重量百分比的增加而提高。然而,过量的粘合剂组分会导致低电导率(电导率<10s
·
m
‑1)。用于配制具有高导电率的糊膏的粘合剂组分的优选含量范围为20wt%

30wt%,更优选为25wt%。该值会导致碳
纳米材料实现良好的电连接。
50.关于机械性能,石墨烯/石墨烯衍生物的薄片和碳纳米管的特定机械性能允许eca得到机械增强。此外,石墨烯/石墨烯衍生物和碳纳米管的优异导热性允许有效散热,提高了eca在电和热耐久性测试中的可靠性。具体而言,纳米材料的协同组合容许获得比采用单独碳组分获得的电气性能(基于石墨烯和基于乙炔黑eca的体积电阻率大于10ωcm;对于单壁碳纳米管,体积电阻率>10
‑1ωcm)更高的电气性能(体积电阻率低于10
‑1ωcm)。因此,本发明的组合物目的允许避免使用贵金属如ag和au作为导电材料,降低了eca的总成本。
51.本发明的另一方面涉及制备上述eca的工艺方法,其包括以下步骤:
52.i)通过在优选120

180℃范围内的温度下熔化选自eva、poe、pvb、paa、pmma、聚丙烯酸酯的聚合物并溶解或分散所述聚合物(或聚合物混合物)于相容溶剂,优选选自氯苯、氯仿、二甲苯、异丙醇及其混合物中而提供粘合剂组分;
53.ii)通过以上述比例混合包含乙炔或碳黑纳米颗粒、碳纳米管和石墨烯或石墨烯衍生物的薄片或板的碳纳米材料的粉末而提供导电组分;
54.iii)通过在40

60℃范围内的温度下机械搅拌而均匀混合所述粘合剂和所述导电组分,以获得糊膏(浆料);
55.iv)通过可选地与低温相容(优选<100℃,包括室温)的溶液中的工艺技术沉积所获得的糊膏,由此获得eca组合物。
[0056]“相容溶剂”在本文中是指能够溶解或分散聚合物组分而不会引起附聚现象的溶剂。
[0057]
在步骤i)中,所述粘合剂组分有利地在高挥发性(即,具有高蒸气压,优选大于约0.8kpa,并且优选具有低加工温度(<100℃,包括室温(25℃)))有机溶剂,特别是氯苯、二甲苯和异丙醇中配制,其在25℃时蒸气压为:氯苯为~1.6kpa,间二甲苯为1.1kpa,邻二甲苯为~0.88kpa,对二甲苯为~1.16kpa,异丙醇为~5.8kpa。
[0058]
在本发明范围内可以使用的其他溶剂报告于权利要求和以下实验部分中。
[0059]
当与聚合物组分相容时,所引述的溶剂也旨在包括此类溶剂的水溶液。水能够用作溶剂或分散剂,或用作溶剂混合物的组分,例如,与具有足够水溶性的聚合物醇一起。这种聚合物主要属于丙烯酸酯类。
[0060]
相对于100重量份的eca(包括溶剂),糊膏粘合剂中溶剂的量通常为50wt%

90wt%。
[0061]
由于在制备工艺过程中使用了高挥发性溶剂,本文所述的eca能够在低温(<100℃)包括室温(25℃)下进行加工(即,沉积/涂施)和固化。这避免了糊膏(paste,焊膏)的高温处理,这是适用于传统焊接(sn

pb焊接的焊接温度大于180℃)和市售eca糊膏(固化温度通常>100℃)的先决条件。
[0062]
本发明的eca目的能够有利地涂施于包括太阳能电池的各种塑料材料和半导体的热敏基板。
[0063]
本发明的另一个目的是使用本发明的eca目标物将通常涂有sn的cu带连接于htj

si中的ag母线,其带涂施工艺方法与传统焊接并不相容。
[0064]
在这些应用中,基于is/iec 61730.2和iec 61215标准中报告的标准电阻测试,在机械、热和电应力之前和之后评价ag母线/eca/cu带之间的机械附着力和电接触质量。
[0065]
本发明的eca目标物对于hjt

si电池中应用导带的工艺方法中的性能与通过传统的ag填充eca获得的性能相当。本发明的另一个目的是本文所述的eca糊膏用于生产表面电阻小于200ω
·
sq
‑1、厚度小于10μm的碳

基背电极的用途。使用室温液相工艺技术(例如,旋涂)将eca沉积于基于psc钙钛矿的膜上。多次沉积循环能够有效生产表面电阻小于50ωsq
‑1的背电极,超过基于tco的背电极(例如,用于hjt

si或双面psc技术)表现出的值。
[0066]
实施例1:采用eva粘合剂组分或弹性体聚烯烃的eca
[0067]
在以下测试和以下实施例中,以下材料用于导电组分:
[0068]

乙炔黑纳米粒子(sigma aldrich),粒径:24nm,
[0069]

从cheap tubes购买的碳纳米管(单壁碳管,外径:1

4nm,内径:0.8

1.6nm,长度:5

30μm);
[0070]

根据wo 2017/089987,通过对在n

甲基
‑2‑
吡咯烷酮中通过石墨湿喷射研磨剥离而获得的薄片分散体进行干燥而分离出的石墨烯薄片粉末;
[0071]

从sigma aldrich购买的商业石墨烯纳米板和还原的氧化石墨烯粉末(sigma aldrich)。
[0072]
在实施例1中,使用了以下聚合物:
[0073]
eva:商业产品杜邦(dupont)(40wt%的醋酸乙烯酯)弹性体聚烯烃:商业产品35521p hlt、str。
[0074]
在所有制备的样品中,使用的粘合剂组分的百分比为25wt%。粘合剂组分预先在150℃(eva)或180℃(聚烯烃)下熔化,并溶解于氯苯或具有上述蒸气压的二甲苯异构体混合物中;6ml溶剂用于1g固体聚合物组分。
[0075]
示例性的eca组合物相对于100份聚合物组分和导电组分具有25wt%的聚合物组分含量。
[0076]
通过用刮刀沉积相应糊膏(浆液)并随后在50℃下干燥该糊膏10分钟而获得eca。所获得的eca的厚度为25

45μm,取决于eca配方,通过光学轮廓仪(profilometer)进行测量。
[0077]
表1显示了每种所测试的eca的每种碳纳米材料的重量百分比、平均体积电阻率和误差(标准偏差)。基于eva和基于poe的eca分别称为c

eva

eca

x和c

聚烯烃

eca

x,其中x表示导电组分和/或溶剂的不同组成。
[0078]
以星号表示的组合物通过比较进行展示。
[0079]
表1.代表性eca样品的导电组分组成和体积电阻率(粘合剂组分的重量百分比=25wt%)。
[0080][0081]
*比较
[0082]
在根据本发明的组合物中,导电组分中的乙炔黑、碳纳米管和石墨烯薄片(通过湿喷射研磨而生产)的组合与相应的比较组合物相比,能够有效地将体积电阻率降低至使用eva聚合物和氯苯溶剂的优选组合物c

eca

4和c

eca

5的低于10
‑1ωcm的值。
[0083]
c

eva

eca

4的体积电阻率与汉高(henkel)市售的银

基eca的测量值(即,0.055
±
0.007ωcm)相当。
[0084]
与具有相同导电组分组成的基于eva的eca相比,作为粘合剂组分的基于聚烯烃的eca显示出更大的体积电阻率;然而,实验测试还表明,与具有单一碳填料形态或包括两种填料形态的相应组合物相比,这些组合物的电阻率降低。
[0085]
从前景角度来看,c

聚烯烃

eca组合物的优化能够进一步降低所获得的体积电阻率。
[0086]
实验数据证实使用氯苯作为示例性聚合物组分的优选溶剂。
[0087]
sem分析(图1)表明,c

eca

eva

4组合物,其是所报告的样品中导电性最好的样品,由填充乙炔黑纳米颗粒的石墨烯薄片的晶格结构组成。导电晶格结构通过填充高导电石墨烯薄片之间的空隙而电连接。碳纳米管由于其纳米尺寸而无法解析。然而,它们有望在多种碳纳米材料之间提供电连接。eva聚合物充当粘合组分而机械粘结整个膜结构。
[0088]
实施例2:产品可靠性
[0089]
为了测试c

eva

eca的可靠性(作为本发明目的),根据所施加的变形测量其电阻。图2所示的结果表明,在最高达20%的拉伸变形时,c

eva

eca组合物的行为类似于市售的银

基eca(henkel)。在拉伸变形值大于20%时,具有更大重量百分比的石墨烯的c

eva

eca组合物(c

eva

eca

5)显示出初始电阻的最佳保持率,这也大于银

基eca所获得的初始电阻值。
[0090]
c

eva

eca的可靠性也通过热应力进行测试。图3图示说明了作为温度的函数的图2中图示说明的相同组合物的电阻。温度从20℃(室温)变化至250℃。对于作为温度的函数的每个电阻采样点,温度保持恒定5分钟。所测试的不同温度之间的增加时间为5分钟。达到
250℃后,使温度冷却至室温。结果表明,c

eva

eca组合物在最高达120℃的温度下仍保持其初始电阻。高于此温度,电阻会随着温度升高而降低。这种效应应该被认为是由eva在高于160℃的温度下的交联而引起的。事实上,当样品冷却到室温时,电阻的变化会部分保持。pv模块的标准层压温度(145

160℃)改善了最终的电气性能。
[0091]
总之,该c

eva

eca组合物在机械和热应力下表现出可靠的电气性能,其值也能够高于c

eva

eca在电气设备(包括太阳能电池)中的实际运行条件下的值。
[0092]
实施例3:hjt

si太阳能电池的验证
[0093]
该c

eva

eca

5组合物作为适用于将金属带施加于金属接触网格(带接头(ribbon tabbing))以串联连接hjt

si太阳能电池的组合物进行验证。使用c

eva

eca

5进行测试,因为它具有优异的机械和电气性能(参见实施例1

3)。图4显示了用于测试的hjt

si结构。该图旁边的表格还显示了hjt

si结构的层厚度。
[0094]
金属接触网格通过丝网印刷沉积于hjt

si的正面和背面。这种网格由垂直于“超薄”网格指的矩形条带(母线)组成。涂锡的铜条用作带。这些带通过c

eva

eca

5而连接至母线。图5图示说明了通过上述粘合剂组合物的带/母线连接的图。
[0095]
通过测量母线的非接触部分和该带的浮动部分之间的电阻(接触电阻),评价了电接触的质量。母线/带接触面积为0.3cm
×
1cm。使用c

eva

eca

5获得的接触电阻为0.219ω。该值优于使用市售的银

基eca获得的值(0.295ω)。为了确定该接触的机械和电气可靠性,在用eva封装母线/带接触区域后进行相同的测量。在使用eva进行传统封装之后,使用c

eva

eca

5获得的接触电阻为0.293ω。同样,该值低于使用ag

基eca测量的接触电阻(0.351ω)。
[0096]
通过测量不同施加电流下的接触电阻而进行母线/带接触电阻测试。
[0097]
图6图示说明了使用ag

基eca和c

eva

eca

5获得的归一化接触电阻,作为从0.01a开始增加到1.5a的所施加电流的函数。插图图示说明了以1.5a的施加电流在2小时后获得的结果,从这样的施加电流开始并将所施加的电流减小至0.01a。
[0098]
应该注意的是,接触区域上的最大归一化施加电流与iec 61730.2(mqt 09)中报告的太阳能电池热点电阻测试所使用的电流相当或更大(所测试的最小电流是整个太阳能电池的短路电流的1.25倍更大)。该测试的目的是确定所述模块承受热点加热效应(即,焊料熔化或封装裂化)的能力。这种缺陷可能是由缺陷电池、未对准电池、遮蔽(shadowing)或污染引起的。由于绝对温度和相对性能损失不是本次测试的标准,因此采用最严酷的热点条件(对应于整个太阳能电池短路电流的1.25倍更大的最小电流),以确保项目的可靠性。事实上,当模块的工作电流超过被遮蔽或缺陷电池或电池组的降低的短路电流时,模块中就会发生热点加热。当这种情况发生时,由此受影响的电池(或电池组)被迫反向极化并且必须耗散能量,从而导致过热。如果能量耗散足够高或足够局域化,则具有反向极化的电池可能会过热,根据技术,会导致焊料熔化、前盖和/或后盖的密封剂劣化、基板覆板和/或玻璃盖破裂。本文中,理想的eca必须通过提供抗热疲劳性和适当散热才能表现出可靠的机械和电气接触。图6的结果表明,与使用ag

基eca而获得的接触电阻类似,使用根据本发明的c

eva

eca获得的接触电阻随着所施加电流的增加具有优异的保持性。两小时后,在1.5a的施加电流下,使用ag

基eca获得的接触电阻增加约20%,而使用c

eva

eca

5获得的接触电阻保持不变。再次将所施加的电流降低到0.01a后,两个接触电阻都显示出与测试开始时测
量的值相似的值。
[0099]
承受由温度变化引起的热变化、疲劳和其他应力的接触可靠性是通过测量代表性温度下的接触电阻而确定。更详细而言,温度从20℃(室温)变化至100℃。达到250℃后,使温度降至室温。因此,接触电阻在

70℃的温度下进行测量。应该注意的是,温度上限和下限高于和低于iec 61215中报告的热循环测试(mqt 11)期间使用的温度上限和下限,其目的是确定模块承受通过反复温度变化引起的热变化、疲劳和其他应力的能力。使用c

eva

eca获得的接触电阻从0.293ω下降到0.257ω。通过将接触冷却至室温,接触电阻为0.2477ω。在将接触冷却至

70℃后,该电阻从0.2477ω降至0.1933ω。在接触恢复到室温后,接触电阻升高到0.2441ω。该值与测试初始阶段内的室温测量的值相当。总之,电阻测试表明该c

eva

eca组合物在电或热应力下会保持其电气性能。
[0100]
实施例4:psc的验证
[0101]
该c

eva

eca

4组合物沉积于介观psc的活性膜上,而提供室温下通过液相工艺方法获得的具有成本有效性的碳

基背电极。根据之前的报道(najafi et al.in acs nano,2018,12(11),pages 10736

10754),由氟掺杂的氧化锡(fto)/致密tio2(ctio2)/介孔tio2(mtio2)/ch3nh3pbi3/2,2',7,7'

四(n,n


‑4‑
甲氧基苯基氨基)

9,9'

螺二芴(螺

ometad)制成的结构用作并非由au

基背电极完成的基准(benchmarking)psc。tio2层对钙钛矿(在我们的案例中为ch3nh3pbi3)的光生负电荷实施选择性提取和传输功能,并形成所谓的电子传输层(etl)。螺

ometad对钙钛矿光生正电荷进行选择性提取和传输功能,并形成所谓的空穴传输层(htl)。c

eva

eca

4的活性材料(导电和粘合剂组分)的浓度调节至111mg ml
‑1,从而为旋涂工艺方法提供合适的粘度。
[0102]
c

eva

eca

4在ch3nh3pbi3/螺

ometad上的沉积通过经由室温动态旋涂的沉积,采用两阶段方案(阶段1:1000rpm,3分钟;阶段2:4000rpm,3分钟)而进行。正如图7的截面sem图像所示,c

eva

eca

4的沉积不会显著劣化下面的分层结构。然而,c

eva

eca在螺

ometad中的相互渗透是可以预料的,因为c

eva

eca溶剂能够溶解螺

ometad。在操作上,基于c

eva

eca的psc的效率能够通过随后在c

eva

eca上沉积螺

ometad而提高。此外,螺

ometad和c

eva

eca的混合物能够用于沉积具有双重htl和电极功能的eca。最后,能够使用具有htl功能的替代螺

ometad而不溶于c

eva

eca溶剂的材料,来避免c

eva

eca在太阳能电池的底层结构中的相互渗透。可替代地,本发明和实施例7中讨论的其他eca目标物能够用于避免使用溶解具有htl功能的材料的溶剂。
[0103]
未对基于c

eva

eca

4的psc进行热处理。
[0104]
所获得的基于c

eva

eca

4的背电极对于小于10μm的厚度具有155
±
20ωsq
‑1的表面电阻。多个沉积循环能够有效生产表面电阻小于50ωsq
‑1的基于c

eva

eca

4的背电极,超过了通过,例如,用于hjt

si或双面psc技术的基于tco

背电极通常获得的值。
[0105]
实施例5:电池和超级电容器的验证
[0106]
该c

eva

eca

4和c

eva

eca

5组合物适用于电池和超级电容器串联电极的机械和电气连接,确保所述串联电极的电接触的总可靠性,电阻在等于或大于1cm
×
1cm的接触区域上和1

400μm的c

eva

eca厚度内小于0.1ω。由c

eva

eca的弹性特性产生的作用于电极本身上的压缩力的均匀分布确保了串联电极的机械和电接触的可靠性。
[0107]
实施例6:采用具有不同醋酸乙烯酯含量的eva粘合剂组分的eca
[0108]
根据实施例1的工序,使用具有不同乙酸乙烯酯含量的eva聚合物制备eca组合物。具体而言,使用了以下eva共聚物:
[0109]

含有40wt%的醋酸乙烯酯的eva(sigma aldrich),称为eva

b;
[0110]

含有25wt%的醋酸乙烯酯的eva(sigma aldrich),称为eva

c;
[0111]

含有18wt%的醋酸乙烯酯的eva(sigma aldrich),称为eva

d;
[0112]

含有12wt%的醋酸乙烯酯的eva(sigma aldrich),称为eva

e。
[0113]
下表2中报告了由此制备的一些eca的主要特征(导电组分的组成,溶剂,体积电阻率)。
[0114]
表2.具有不同醋酸乙烯酯含量(粘合剂组分的重量百分比=25%)的代表性基于eva的eca样品的导电组分的组成和体积电阻率。
[0115][0116]
实施例7:具有不同聚合物组分和溶剂的eca
[0117]
除了在实施例1的测试中使用的聚合物之外,还使用了其他聚合物,报告为封装材料,遵照实施例1中描述的工序。具体而言,使用了聚乙烯醇缩丁醛(pvb)、聚(丙烯酸)(paa)、聚(甲基丙烯酸甲酯)(pmma)和商用丙烯酸酯混合物(hydrolac 610l,以水性分散体形式提供的材料)。本文中,除了氯苯和二甲苯之外,还使用了能够适当溶解或分散所使用的聚合物的其他溶剂。
[0118]
具体而言,使用了以下溶剂:
[0119]

对于pvb,醋酸和其他挥发性较低的溶剂,如环己酮、丁醇、二甲基甲酰胺(dmf)、n

甲基
‑2‑
吡咯烷酮(nmp)、二甲亚砜(dmso)。对于这些测试,通过刮刀沉积产生的eca在50℃下干燥60分钟;
[0120]

对于pmma,硝基乙烷、甲苯、氯仿、乙酸乙酯、氯苯和环己酮(挥发性较小的溶剂);通过刮刀沉积产生的eca在50℃下干燥60分钟;
[0121]

对于paa,异丙醇(ipa)和乙醇;
[0122]

对于商业丙烯酸酯混合物,水。
[0123]
下表3显示了上述eca的主要特征,其中使用了对应于c

eva

eca

4(或c

eva

eca

4b或c

聚烯烃

eca

4)产品的导电组分组合物。
[0124]
表3.除氯苯外使用不同粘合剂聚合物组分和溶剂的eca的导电组分组成和体积电阻率(粘合剂聚合物组分的重量百分比=25%)。
[0125][0126][0127]
实施例8:具有不同溶剂和工艺限制的粘合剂组合物
[0128]
尽管用于实施例1的表1和实施例7的表3中所示的eca的溶剂通常能够用于根据实施例1中给出的工序配制eca,但它们能够对用于加工处理(即,沉积/涂施)eca的方法施加限制。根据所用溶剂的特性,建议使用下表4中所示的技术在低温(<100℃)下加工处理所得的eca。此外,在本发明的范围内还能够使用其他技术,如凹版印刷和柔版印刷;除了在与表4相关的注释中指出的那些之外,其他沉积参数的使用,如基板温度和糊膏温度,也落入本发明的范围内。
[0129]
表4.取决于溶剂的eca的优选工艺方法
[0130][0131][0132]
a保持温度<100℃的基板
[0133]
b保持于室温的糊膏和基板
[0134]
c作为组合物的固体组分含量的函数,相对于100份的eca(包括溶剂),溶剂的量能够增加到高于90%的值
[0135]
d作为eca的材料、溶剂和固体组分浓度的函数,丝网要根据材料、网目数和网眼张力进行选择
[0136]
e保持于温度<100℃的基板。
[0137]
实施例9(比较实施例)
[0138]
为了进行比较,重新生产了cn 109320893的实施例3中描述的制剂。
[0139]
下表5显示了用于重新生产该实施例的材料和相应用量。
[0140]
表5.cn 108384103的实施例3中报道的产品组成
[0141]
[0142][0143]
(1):固化剂:聚醚胺
[0144]
所获得的材料是由单独的团块形成的湿固体形式,使该材料不能通过先前描述的沉积方法,例如,特别是通过刮刀、旋涂、喷涂和丝网印刷进行处理。图8显示了通过根据本发明的c

eva

eca

4产品的刮刀沉积而获得的膜(左侧)与在该比较实施例中获得的产品(右侧)的比较。
[0145]
为了测量所得复合材料的电阻率,将一块材料压制成膜形式。测得的体积电阻率为3.99ω
·
cm,这比使用相同粘合剂聚合物组分(eva)的根据本发明的产品表现出的体积电阻率高约两个数量级。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献