一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

磁性氟化共价有机框架材料及其制备方法和应用与流程

2021-12-01 01:45:00 来源:中国专利 TAG:


1.本技术涉及纳米材料制备及农药残留检测领域,具体涉及磁性氟化共价有机框架材料及其制备方法和应用。


背景技术:

2.公开该背景技术部分的信息仅仅旨在增加对本技术的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
3.苯甲酰脲类农药,是一种昆虫生长调节剂,能抑制目标昆虫的几丁质合成,导致其死亡或不育,被广泛应用于玉米、棉花、大豆、水稻、小麦、蔬菜、果树和茶叶等农作物的病虫害防治。然而,苯甲酰脲类农药的大量使用导致其在环境及植物中残留,并通过食物链进入人体。欧洲食品安全局的一份草案显示,三氟脲对哺乳动物的急性毒性较低,但可诱发溶血性贫血,对脾脏、肝脏和肾脏也有副作用。因此有必要建立准确可靠的分析方法评估苯甲酰脲类农药在环境及食品中的存在情况,为有关部门作出质量安全评价提供科学依据。
4.环境及食品样品成分复杂,实现对其中所含苯甲酰脲类农药的准确分析需要依托前处理方法分离富集后,再进行仪器分析。常用样品前处理的方法有液液萃取、固相萃取、固相微萃取和磁固相萃取等。其中磁固相萃取(mspe)基于磁性材料,通过外部磁场辅助分离,在不消耗大量有机溶剂的情况下,将目标物分离富集,操作方便且节约时间。mspe通常利用fe3o4提供磁性,然而fe3o4纳米颗粒提取效率不足,因此需要对fe3o4纳米颗粒进行修饰,而且外部修饰的材料在提高富集效率方面起着重要作用。共价有机框架材料(cofs)一类由共价键构筑,具有周期性结构和结晶性的有机多孔聚合物。得益于有序的孔结构、可调的孔径、高的比表面积和丰富的构造基元等特征,cofs在样品前处理领域引起了广泛的关注。


技术实现要素:

5.为改善现有技术的不足,本发明提供了一种磁性氟化共价有机框架材料及其制备方法和应用,本发明的磁性氟化共价有机框架材料对于苯甲酰脲类农药表现出强吸附选择性和高分离富集效率,且吸附剂用量少、萃取时间短,可重复使用。
6.具体地,本发明提供了下述的技术特征,以下技术特征的一个或多个的结合构成本发明的技术方案。
7.在本发明的第一方面,本发明提供了一种磁性氟化共价有机框架材料,其结构简式为fe3o4@tapt

tfta

cof,其为核壳结构,以羧基化fe3o4纳米颗粒为核,以2,4,6

三(4

氨基苯基)

1,3,5

三嗪(tapt)和2,3,5,6

四氟对二苯甲醛(tfta)为单体缩聚形成的共价结构为壳,所述壳层的表面呈海胆状。
8.在本发明的实施方式中,所述磁性氟化共价有机框架材料的最大饱和磁值不低于14.7emu/g,优选为14.7emu/g~80.6emu/g。在外磁场(磁铁)的作用下,磁性氟化共价有机
框架材料表现出足够的磁响应性能,能够很好的满足磁分离需求。
9.在本发明的第二方面,本发明提供了一种制备上述第一方面中所述的磁性氟化共价有机框架材料的方法,其包括:羧基化fe3o4纳米颗粒超声分散于介质中,加入2,4,6

三(4

氨基苯基)

1,3,5

三嗪,振荡后,加入2,3,5,6

四氟对二苯甲醛和稀醋酸,振荡,磁分离、洗涤、干燥即得。
10.在本发明的一些实施方式中,所述羧基化fe3o4纳米颗粒可以采用本领域已知的多种方法进行制备,但是,以其为原料制备得到的磁性氟化共价有机框架材料的吸附性能会有很明显的差异性。经过发明人研究发现,当以六水合氯化铁、柠檬酸三钠、尿素和聚丙烯酰胺为原料,采用水热法合成时,以获得羧基化fe3o4纳米颗粒制备磁性氟化共价有机框架材料,会获得稳定的吸附性能,重现性更好且吸附性能更好。
11.具体地,在本发明的一些实施方式中,分散羧基化fe3o4纳米颗粒的介质为乙腈。
12.在本发明的上述公开中,本领域技术人员可采用本领域的已知手段优化合成过程中的各项参数或条件,作为示例,发明人提供了一组优选的参数条件。
13.在本发明的一些实施方式中,羧基化fe3o4纳米颗粒在介质中的分散浓度为0.5

1mg/ml。2,4,6

三(4

氨基苯基)

1,3,5

三嗪的浓度为5~10mmol/l,2,4,6

三(4

氨基苯基)

1,3,5

三嗪与2,3,5,6

四氟对二苯甲醛的摩尔比为1:1~3。在本发明的一些实施方式中,加入2,4,6

三(4

氨基苯基)

1,3,5

三嗪后,需要振荡一段时间后,再加入2,3,5,6

四氟对二苯甲醛,这段时间为3~12h为宜。以及,在加入醋酸后进行振荡的时间以12~72h为宜。上述过程均在室温下进行。
14.在本发明的第三方面,本发明提供了一种磁固相萃取试剂,其包含上述第一方面中所述的磁性氟化共价有机框架材料。
15.在本发明的第四方面,本发明提供了一种磁固相萃取试剂盒,其包含上述第一方面中所述的磁性氟化共价有机框架材料或上述第三方面中所述的磁固相萃取试剂和解吸剂。
16.在本发明的一些实施方式中,所述解吸剂为甲醇、乙腈或丙酮。
17.在本发明的第五方面,本发明提供了上述第一方面中所述的磁性氟化共价有机框架材料或上述第三方面中所述的磁固相萃取试剂或上述第四方面中所述的磁固相萃取试剂盒在苯甲酰脲类农药的检测、选择性分离和/或富集中的应用。
18.在本发明的实施方式中,所述苯甲酰脲类农药包括但不限于灭幼脲、杀虫脲、氟铃脲、氟酰脲、啶蜱脲、氟幼脲或虱螨脲。
19.本发明的磁性氟化共价有机框架材料能够选择性吸附苯甲酰脲类农药,用量少、耗时短且吸附性强,并且可以重复使用,且易于再生。在本发明的一些实施方式中,采用本发明的磁性氟化共价有机框架材料进行吸附时,循环使用8次后,苯甲酰脲类农药回收率未出现明显波动,均能稳定保持在90%左右,表现出良好的稳定性和良好的循环使用性能。
20.在本发明的第六方面,本发明提供了一种选择性分离和/或富集苯甲酰脲类农药的方法,其采用磁固相萃取方法,包括将磁固相萃取试剂与含有苯甲酰脲类农药的溶液混合后吸附,然后加入解吸剂解吸;
21.其中,所述磁固相萃取试剂为本发明第一方面中所述的磁性氟化共价有机框架材料或包含该材料的磁固相萃取试剂;所述解吸剂为甲醇、乙腈或丙酮。
22.本发明的一些实施方式中,采用本发明的磁性氟化共价有机框架材料进行磁固相萃取时,萃取时间可低至5min,一般而言,萃取时长在5~60min。
23.本发明的方法简单易行,无需制备成复杂结构、只需与样品溶液混合即可实现对苯甲酰脲类农药的吸附。并且萃取时间短、试剂用量少。
24.在本发明的第七方面,本发明提供了一种检测苯甲酰脲类农药的方法,其包括将磁固相萃取试剂与待分析物混合后萃取,然后加入解吸剂解吸后,磁分离,收集得到的物质作为待测物质,使用液相色谱质谱联用进行检测;
25.其中,所述磁固相萃取试剂为本发明上述第一方面中所述的磁性氟化共价有机框架材料或包含该材料的其他萃取试剂;所述解吸剂为甲醇、乙腈或丙酮。或者,可直接采用包含所述的磁性氟化共价有机框架材料和解吸剂的试剂盒。
26.在本发明的一些实施方式中,磁固相萃取时间为5~60min,磁固相萃取解吸剂体积为5~10ml。
27.在一些实施例中,在本发明的一些实施方式中,液相色谱分离采用c18色谱柱,流动相为乙酸铵水和乙腈,质谱分析采用电喷雾离子源,负离子化模式,多反应监测方式。
28.通过上述一个或多个技术手段,可实现以下有益效果:
29.本发明的磁性氟化共价有机框架材料为表面呈海胆状的核壳结构,粒径均匀、磁响应性强且制备方法简易。该磁性氟化共价有机框架材料可用于磁固相萃取苯甲酰脲类农药,表现出强吸附选择性和高分离富集效率,其显著优势是吸附剂用量少,萃取时间短,可以重复使用,降低检测成本。
附图说明
30.构成本技术的一部分的说明书附图用来提供对本技术的进一步理解,本技术的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。以下,结合附图来详细说明本技术的实施方案,其中:
31.图1为本发明制备磁性氟化共价有机框架材料的制备流程图。
32.图2为实施例1中磁性氟化共价有机框架材料的扫描电镜图。
33.图3为实施例1中磁性氟化共价有机框架材料的x

射线衍射图。
34.图4为实施例1中fe3o4和磁性氟化共价有机框架材料的磁滞回线图。
35.图5为实施例3中磁性氟化共价有机框架材料循环使用性能结果图。
具体实施方式
36.下面结合具体实施例,进一步阐述本技术。应理解,这些实施例仅用于说明本技术而不用于限制本技术的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
37.除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。本技术所使用的试剂或原料均可通过常规途径购买获得,如无特殊说明,本技术所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本技术方法中。文中所述的较佳实施方法与材料仅作示范之用。
38.实施例1磁性氟化共价有机框架材料的制备:
39.将六水合氯化铁、柠檬酸三钠和尿素以1:2:3的摩尔比溶解于30ml水中,搅拌加入300mg聚丙烯酰胺,1h后将混合物转移到反应釜中,200℃反应12h,反应结束后,利用外加磁场将沉淀从反应介质中分离出来,用水和乙醇反复清洗后,干燥得到羧基化fe3o4纳米颗粒。
40.将30mg羧基化fe3o4纳米颗粒超声分散于30ml乙腈中,加入0.24mmol的2,4,6

三(4

氨基苯基)

1,3,5

三嗪,室温振荡6h后,加入0.36mmol的2,3,5,6

四氟对二苯甲醛和6ml 12mmol/l的醋酸,室温振荡24h,磁分离、乙腈反复清洗、干燥得到磁性氟化共价有机框架材料。
41.制得的磁性氟化共价有机框架材料为核壳结构,表面壳层呈海胆状,其对应扫描电镜图见图2。
42.制得的磁性氟化共价有机框架材料的xrd谱图中含有典型的羧基化fe3o4纳米颗粒和氟化共价有机框架材料的衍射峰,相关结果见图3。
43.对制得的磁性氟化共价有机框架材料的磁性质进行了测量,相关结果见图4。fe3o4纳米颗粒的最大饱和磁值约为80.6emu/g,由于氟化共价有机框架材料的修饰包覆,磁性氟化共价有机框架材料的最大饱和磁值下降,约为14.7emu/g,在外磁场(磁铁)的作用下,磁性氟化共价有机框架材料表现出足够的磁响应性能,可以满足后续磁分离需求。
44.实施例2以磁性氟化共价有机框架材料为磁固相萃取吸附剂的前处理条件优化:
45.称取5mg磁性氟化共价有机框架材料至50ml玻璃瓶内,加入25ml水超声分散均匀。加入0.5ml苯甲酰脲类农药,振荡吸附一定时间后,磁分离,弃掉上清液。其次,加入适量的解吸剂,超声解吸一定时间后,磁分离,收集洗脱液。最后,氮气吹干复溶,采用滤膜过滤后,由液相色谱质谱联用仪进样分析。
46.其中,液相色谱分离采用c18色谱柱(100mm
×
2.1mm,2.6μm),流动相为5mmol/l乙酸铵水(c)和乙腈(d),流速0.3ml/min,梯度洗脱程序为0~5.0min,55~80%d,5.0~5.1min,80~55%d和5.1~7.0min,55%d。
47.质谱检测条件:电喷雾离子源,负离子化模式,离子源温度500℃,加速电压

4500v,气帘气35psi,雾化气45psi,辅助加热气50psi。以负离子多重反应监测模式(mrm)进行检测,以外标法定量苯甲酰脲类农药,多反应监测模式参数见表1。
48.表1.苯甲酰脲农药mrm模式检测的相关参数
[0049][0050][0051]
调整上样溶液ph、离子强度、解吸剂种类、解吸剂体积、振荡吸附时间和超声解吸时间,考察影响磁固相萃取效率的参数。在设置的调节区间内,溶液ph及离子强度对萃取效率无明显影响;甲醇、乙腈和丙酮均可高效解吸吸附在磁性氟化共价有机框架材料上苯甲酰脲类农药;解吸剂的体积应设置在5ml及以上;振荡吸附时间和超声解吸时间应设置在5min及以上。
[0052]
实施例3磁性氟化共价有机框架材料作为磁固相萃取吸附剂的循环使用性能考察
[0053]
在最优前处理条件下,采用实施例2的操作流程,将完成首次磁固相萃取流程的磁性氟化共价有机框架材料依次与10ml甲醇和10ml水混合,分别超声10min后,磁分离,完成材料再生。执行实施例2的操作流程,对比不同吸附

解吸循环后苯甲酰脲类农药的回收率,结果见图5。经8次循环使用后,苯甲酰脲类农药回收率未出现明显波动,依然全部维持在90%左右,这表明fe3o4@tapt

tfta

cof不仅对于苯甲酰脲类农药具有良好的吸附作用,而且还具有良好的稳定性和循环使用性能。
[0054]
实施例4磁性氟化共价有机框架材料对苯甲酰脲类农药的选择性吸附性能考察:
[0055]
准确称取5mg fe3o4@tapt

tfta

cof超声分散于24ml水中,加入1ml含有125μg/l苯甲酰脲类农药、磺胺类抗生素、苯氧羧酸类农药和全氟化合物的混合标液,振荡吸附30min后,磁分离,收集上清液。随后,加入5ml ma作为解吸剂,超声解吸10min,磁分离,收集洗脱液。使用hplc

ms/ms测定上清液和洗脱液中苯甲酰脲类农药、磺胺类抗生素、苯氧羧酸类农药和全氟化合物的浓度,计算回收率。
[0056]
表2.以磁性氟化共价有机框架材料为吸附剂获得的回收率
[0057]
化合物回收率(%)化合物回收率(%)磺胺嘧啶19.7
±
1.9全氟十二烷酸105.3
±
6.8磺胺噻唑27.9
±
1.4全氟十三烷酸102.5
±
6.6磺胺吡啶24.9
±
0.9全氟辛烷磺酸98.1
±
9.4磺胺甲基嘧啶29.7
±
0.8全氟癸烷磺酸95.3
±
8.1磺胺二甲嘧啶30.6
±
2.6灭幼脲109.9
±
0.6磺胺异噁唑28.6
±
4.3氟幼脲90.8
±
2.12

甲基
‑4‑
氯苯氧乙酸13.6
±
0.2杀虫脲100.5
±
5.02,4

二氯苯氧乙酸10.8
±
0.3氟铃脲100.7
±
1.02,4,5

三氯苯氧乙酸32.3
±
1.7氟酰脲103.7
±
3.52,4,5

涕丙酸35.2
±
0.8氟啶蜱脲95.3
±
3.6全氟癸酸96.3
±
6.6虱螨脲93.0
±
3.6全氟十一烷酸103.5
±
8.0
ꢀꢀ
[0058]
结果表明:苯甲酰脲类农药的回收率未受影响,维持在90.8%~103.7之间。如表2所示,磺胺类抗生素、苯氧羧酸类农药和全氟化合物的回收率分别为19.7%~30.6%、10.8%~35.2%和95.3%~105.3%。这表明fe3o4@tapt

tfta

cof对苯甲酰脲类农药具有良好的吸附选择性。
[0059]
以上所述仅为本技术的优选实施例而已,并不用于限制本技术,尽管参照前述实施例对本技术进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本技术的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本技术的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献