一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种GH690合金的制备工艺的制作方法

2021-11-15 19:02:00 来源:中国专利 TAG:

一种gh690合金的制备工艺
技术领域
1.本发明属于合金生产技术领域,具体涉及一种gh690合金的制备工艺。


背景技术:

2.gh690合金的美国牌号为inconel 690,其主要化学成分如表1所示:
3.表1 gh690合金主要化学成分
[0004][0005]
gh690合金是一种铬含量为30%左右的镍基变形高温合金,该合金在不同温度的水溶液中均具有优良的耐应力腐蚀和抗晶间腐蚀性能,且具有较高的强度、良好的冶金稳定性及优良的加工性能等,非常适用于制造核工业中蒸汽发生器的传热管。
[0006]
早期氮被认为是合金中的杂质元素,后来经过研究发现,在一定条件下,氮可以发挥合金化元素的作用,起到固溶强化和提高淬透性的作用,且氮化物会在晶界析出,提高晶界高温强度,增加合金的蠕变强度。gh690合金对氮含量的要求就非常严格,需要合金中氮含量保持在0.013~0.017之间,但是氮作为气体元素,在真空熔炼过程中非常容易损失,所以很难准确地控制合金中的氮含量。此外,gh690合金对氧、硫、磷等元素的要求也很高,现有技术很难做到在保证氮含量合适的情况下,将氧、硫、磷降低到一个极低的水平。


技术实现要素:

[0007]
本发明的目的是在于克服现有技术中存在的不足,提供一种gh690合金的制备工艺,通过该工艺制备得到的gh690合金各项成分均达标,且气体及有害元素成分含量极低。为实现以上技术目的,本发明实施例采用的技术方案是:
[0008]
本发明实施例提供了一种gh690合金的制备工艺,包括以下步骤:
[0009]
步骤s1:对原材料进行预处理,预处理后的原材料表面干燥、清洁、无尘、无油污;所述原材料包括:石墨碳、金属铬、纯铁、镍板、工业纯硅、金属锰、氮化铬、镍镁、镍钙、金属铝及金属钛;
[0010]
步骤s2,加料:将镍板、石墨碳、金属铬、纯铁、工业纯硅通过侧加料的方式加入至真空感应炉坩埚中;
[0011]
步骤s3,熔融:给电,原材料开始升温,同时将熔炼室的真空度抽至10pa以下,待原材料熔清后,进行第一次测温,所述熔清温度控制为1500~1510℃,搅拌使得钢液成分均匀,并进行第一次取样及成分检测;
[0012]
步骤s4,精炼:将所述熔炼室真空度抽至1pa以下;精炼前期,将所述熔炼室升温至精炼前期温度,精炼30~40min,进行第二次取样检测及第二次测温;继续精炼60~70min,进行第三次取样检测及第三次测温,并调整钢液的温度;继续精炼60~70min,进行第四次
取样检测,若成分含量未达到控制点,则进行调料,若成分含量达到控制点,则将熔炼室温度调至精炼后期温度并进行保温;
[0013]
步骤s5,出钢浇注:将经步骤s4精炼后的钢液升温至出钢温度,持续向熔炼室中通入氩气,并进行第四次测温,向钢液中加入金属锰、氮化铬,搅拌均匀后继续加入镍镁、镍钙,并再次搅拌均匀,最后将钢液浇注出钢,得到gh690合金电极;
[0014]
步骤s6,电极表面精整:将gh690合金电极进行头尾切除、表面磨光处理,以达到电渣重熔炉冶炼条件;
[0015]
步骤s7:电渣重熔:在保护气氛电渣炉中对步骤s6精整后的电极进行电渣重熔,得到gh690合金锭。
[0016]
具体地,步骤s1中所述原材料预处理包括:对所述纯铁、镍板进行喷丸处理;对镍板进行切边;将氮化铬放置于加热炉内,在390~410℃下烘烤8~10h,备足调料所需要的金属铝小块和金属钛小块。
[0017]
具体地,步骤s3中,所述第一次成分检测是检测钢液中的碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的成分含量。
[0018]
具体地,步骤s4中,所述精炼前期温度为1510~1520℃;
[0019]
所述第二次成分检测是检测钢液中的碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的成分含量,并根据需要调整钢液中碳、铁及铬的成分含量;
[0020]
所述第三次成分检测是检测钢液中的碳、铬、铝、铁、钛、硫、磷、氧、氮、氢的成分含量,根据需要调整钢液中碳、铬、铁的成分含量,并加入铝和钛,搅拌均匀;
[0021]
所述第四次成分检测是检测钢液中的碳、铬、锰、铝、铁、钛、硫、磷、氧、氮、氢的成分含量;
[0022]
具体地,以质量分数计,所述控制点各组分组成如下:碳:0.018~0.023%,铬:29.4~29.8%,铁:9.3~9.7%,硅:0.25~0.35%,锰:0.25~0.35%,硫:≤0.0015%,磷:≤0.008%,氧:≤0.0015%,氮:0.013~0.017%,氢:≤0.0003%。
[0023]
具体地,步骤s4中,所述精炼后期温度为1460~1480℃,保温时间为30min。
[0024]
具体地,步骤s5中,所述出钢温度为1500~1510℃。
[0025]
具体地,步骤s7中,以质量分数计,所述保护气氛电渣重熔的渣料包括以下组分:氟化钙:48~52%,氧化铝:19~21%,氧化钙:14~16%,氧化镁:9~11%,二氧化钛:4.2~5.8%。
[0026]
本发明实施例提供的技术方案带来的有益效果是:
[0027]
1、本发明对原材料进行严格的预处理,除常规的喷丸处理外,对镍板切边以去除氧化部分,高温烘烤氮化铬以去除其表面水分,对原材料严格的预处理大大降低合金熔炼过程中的氧含量及氢含量。
[0028]
2、对调料阶段进行精细化控制,采用足量的小颗粒原料实现精准调料。
[0029]
3、严格控制熔炼期和精炼期时的真空度,熔化期的真空度为10pa以内,精炼期的真空度为1pa以内。通过加强对真空感应炉熔炼室内的真空度的控制,一方面大大降低坩埚内钢液的气体含量,另一方面也降低了熔炼室内部的气压,有利于钢液中有害杂质元素的逸出,从而提高gh690合金电极的纯净度。
[0030]
4、在加入氮化铬、金属锰、镍钙、镍镁前充入氩气,从而增加钢液面上方的压力,减
少氮、锰、钙、镁等元素的挥发,提升了氮、锰、钙、镁等元素的收得率。
[0031]
5、通过多次成分检测及精准调料来控制钢液成分,其中碳、铬、铁、硫、磷、氧、氮、氢等元素至少检测4次,钴、钼、硅、铝、钛等元素至少检测2次,锰元素至少检测1次。
[0032]
6、通过各阶段的严格控温,保证冶炼顺利进行。其中,熔化期温度保持在1500~1510℃,保证各种原料的顺利熔清;精炼前期温度控制在1510~1520℃,促进钢液中的碳氧反应,加速气体的脱除;精炼后期温度控制在1460~1480℃,降低温度,减少活泼元素的烧损;出钢温度控制在1500~1510℃,保证钢液在浇注时流动性合适,能顺利浇入钢锭模中,且不会在浇注过程中出现冻钢现象。
具体实施方式
[0033]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
[0034]
本发明实施例提供一种gh690合金的制备工艺,包括以下步骤:
[0035]
步骤s1:对原材料进行预处理,预处理后的原材料表面干燥、清洁、无尘、无油污;所述原材料包括:石墨碳、金属铬、纯铁、镍板、工业纯硅、金属锰、氮化铬、镍镁、镍钙、金属铝及金属钛;
[0036]
步骤s2,加料:将镍板、石墨碳、金属铬、纯铁、工业纯硅通过侧加料的方式加入至真空感应炉坩埚中;
[0037]
步骤s3,熔融:给电,原材料开始升温,同时将熔炼室的真空度抽至10pa以下,例如可以为2pa、4pa、6pa、8pa等;待原材料熔清后,进行第一次测温,所述熔清温度控制为1500~1510℃,例如可以为1500℃、1502℃、1504℃、1506℃、1508℃、1510℃等,搅拌使得钢液成分均匀,并进行第一次取样及成分检测;
[0038]
步骤s4,精炼:将所述熔炼室真空度抽至1pa以下,例如可以为0.2pa、0.4pa、0.6pa、0.8pa等;精炼前期,将所述熔炼室升温至精炼前期温度,精炼30~40min,例如可以为30min、32min、34min、36min、38min、40min等,进行第二次取样检测及第二次测温;继续精炼60~70min,例如可以为60min、62min、64min、66min、68min、70min等,进行第三次取样检测及第三次测温,并调整钢液的温度;继续精炼60~70min,例如可以为60min、62min、64min、66min、68min、70min等,进行第四次取样检测,若成分含量未达到控制点,则进行调料,若成分含量达到控制点,则将熔炼室温度调至精炼后期温度并进行保温;
[0039]
通过严格控制熔炼期和精炼期时的真空度,熔化期的真空度为10pa以内,精炼期的真空度为1pa以内,一方面可以大大降低坩埚内钢液的气体含量,另一方面也降低了熔炼室内部的气压,有利于钢液中有害杂质元素的逸出,从而提高gh690合金电极的纯净度。
[0040]
步骤s5,出钢浇注:将经步骤s4精炼后的钢液升温至出钢温度,持续向熔炼室中通入氩气,并进行第四次测温,向钢液中加入金属锰、氮化铬,搅拌均匀后继续加入镍镁、镍钙,并再次搅拌均匀,最后将钢液浇注出钢,得到gh690合金电极;
[0041]
出钢前所要加入的材料中,氮、锰、钙、镁等元素在真空下易于挥发,持续向熔炼室中通入氩气,有助于减少氮、锰、钙、镁成分的挥发,提高氮、锰、钙、镁成分的收得率;
[0042]
步骤s6,电极表面精整:将gh690合金电极进行头尾切除、表面磨光处理,以达到电
渣重熔炉冶炼条件;
[0043]
步骤s7:电渣重熔:在保护气氛电渣炉中对步骤s6精整后的电极进行电渣重熔,得到gh690合金锭。
[0044]
具体地,步骤s1中,所述原材料预处理包括:对所述纯铁、镍板进行喷丸处理;对镍板进行切边;将氮化铬放置于加热炉内,在390~410℃下烘烤8~10h,例如温度可以为390℃、395℃、400℃、405℃、410℃等,烘烤时间可以为8.0h、8.5h、9.0h、9.5h、10.0h等,备足调料所需要的金属铝小块和金属钛小块。
[0045]
对熔炼所需的原材料进行预处理。首先对纯铁、镍板等原材料进行喷丸处理,以去除表面氧化层,其中原材料镍板需切边,以去除氧化严重的部分;减少熔炼过程中氧元素的含量;原材料中的纯铁必须满足gh690合金的冶炼成分要求;铝和钛等使用量较小且需要调料的元素,冶炼前需备足小块金属,以保证精准调料;将氮化铬在高温下烘烤,可确保氮化铬表面干燥,避免水分等杂质的残留,从而避免引入氧和氢等杂质元素。
[0046]
具体地,步骤s3中,所述第一次成分检测是检测钢液中的碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的成分含量。
[0047]
具体地,步骤s4中,所述精炼前期温度为1510~1520℃,例如可以为1510℃、1512℃、1514℃、1516℃、1518℃、1520℃等;
[0048]
控制精炼前期温度,促进钢液中的碳氧反应,加速气体的脱除;
[0049]
所述第二次成分检测是检测钢液中的碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的成分含量,并根据需要调整钢液中碳、铁及铬的成分含量;
[0050]
所述第三次成分检测是检测钢液中的碳、铬、铝、铁、钛、硫、磷、氧、氮、氢的成分含量,根据需要调整钢液中碳、铬、铁的成分含量,并加入铝和钛,搅拌均匀;
[0051]
所述第四次成分检测是检测钢液中的碳、铬、锰、铝、铁、钛、硫、磷、氧、氮、氢的成分含量;
[0052]
通过多次成分检测及精准调料来控制钢液成分,其中碳、铬、铁、硫、磷、氧、氮、氢等元素至少检测4次,钴、钼、硅、铝钛等元素至少检测2次,锰元素至少检测1次。
[0053]
具体地,以质量分数计,所述控制点各组分组成如下:碳:0.018~0.023%,例如可以为0.018%、0.019%、0.020%、0.021%、0.022%、0.023%等;铬:29.4~29.8%,例如可以为29.4%、29.5%、29.6%、29.7%、29.8%等;铁:9.3~9.7%,例如可以为9.3%、9.4%、9.5%、9.6%、9.7%等;硅:0.25~0.35%,例如可以为0.25%、0.27%、0.29%、0.31%、0.33%、0.35%等;锰:0.25~0.35%,例如可以为0.25%、0.27%、0.29%、0.31%、0.33%、0.35%等;硫:≤0.0015%,例如可以为0.0010%、0.0011%、0.0012%、0.0013%、0.0014%、0.0015%等;磷:≤0.008%,例如可以为0.002%、0.004%、0.006%、0.008%等;氧:≤0.0015%,例如可以为0.0003%、0.0006%、0.0009%、0.0011%、0.0013%、0.0015%等;氮:0.013~0.017%,例如可以为0.013%、0.014%、0.015%、0.016%、0.017%等;氢:≤0.0003%,例如可以为0.0001%、0.0002%、0.0003%等。
[0054]
具体地,步骤s4中,所述精炼后期温度为1460~1480℃,例如可以为1460℃、1462℃、1464℃、1466℃、1468℃、1470℃、1472℃、1474℃、1476℃、1478℃、1480℃等,保温时间为30min,例如可以为30min、32min、34min、36min、38min、40min等。
[0055]
精炼后期,将温度降低至1460~1480℃进行保温,一方面可减少活泼元素的烧损,
另一方面可减小氧、氮、氢等气体的溶解度,使得钢液中的气体杂质得到去除;
[0056]
具体地,步骤s5中,所述出钢温度为1500~1510℃,例如可以为1500℃、1502℃、1504℃、1506℃、1508℃、1510℃等。
[0057]
出钢温度控制在1500~1510℃之间,可确保钢液的流动性合适,若出钢温度过高时,浇注的感应电极在冷却时易产生二次缩孔现象,若出钢温度过低,则钢液粘度过大,不利于顺利浇注,且易发生冻钢现象,因此控制合理的出钢温度,有助于提高gh690合金的品质。
[0058]
具体地,步骤s7中,以质量分数计,所述保护气氛电渣炉中的渣料包括以下组分:氟化钙:48~52%,例如可以为48%、49%、50%、51%、52%等,氧化铝:19~21%,例如可以为19%、19.5%、20%、20.5%、21%等,氧化钙:14~16%,例如可以为14%、14.5%、15%、15.5%、16%等,氧化镁:9~11%,例如可以为9%、9.5%、10%、10.5%、11%等,二氧化钛:4.2~5.8%,例如可以为4.2%、4.4%、4.6%、4.8%、5.0%、5.2%、5.4%、5.6%、5.8%等。
[0059]
实施例1
[0060]
一种gh690合金的制备工艺,包括以下步骤:
[0061]
步骤s1:原材料预处理:原材料选用石墨碳、金属铬、纯铁、镍板、工业纯硅、金属锰、氮化铬、镍镁、镍钙,备足调料所需要的金属铝小块和金属钛小块,其中,对纯铁、镍板进行喷丸处理,对镍板进行切边,将氮化铬放置于加热炉内,在400℃下烘烤10h,确保预处理后的原材料表面干燥、清洁、无尘、无油污;
[0062]
步骤s2,加料:将镍板、石墨碳、金属铬、纯铁、工业纯硅通过侧加料的方式加入5吨真空感应炉坩埚中;
[0063]
步骤s3,熔融:给电,原材料开始升温,同时将熔炼室内的真空度抽至5.7pa,待原材料熔清后,进行第一次测温,所述熔清温度设为1506℃,搅拌使得钢液成分均匀,进行第一次取样并检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量。
[0064]
步骤s4,精炼:将熔炼室真空度抽至为0.368pa;精炼前期,将熔炼室升温至1515℃并保持恒温;精炼30min,进行第二次测温及第二次取样,检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量,并根据需要调整钢液中碳、铁及铬的成分含量;继续精炼60min,进行第三次测温,调整钢液的温度,第三次取样并检测钢液中碳、铬、铝、铁、钛、硫、磷、氧、氮、氢的元素含量,根据需要调整钢液中碳、铬、铁的成分含量,并加入铝和钛,搅拌溶解均匀;继续精炼60min,进行第四次取样并检测钢液中碳、铬、锰、铝、铁、钛、硫、磷、氧、氮、氢的成分含量是否达到控制点,若未达到控制点,则继续调料,若达到控制点,则将熔炼室温度降低至1460℃并保温30min;
[0065]
步骤s5,出钢浇注:将经步骤s4精炼后的钢液升温至1500℃,持续向熔炼室中通入氩气,并进行第四次测温,向钢液中加入金属锰、氮化铬,搅拌均匀后继续加入镍镁、镍钙,并再次搅拌,最后将钢液浇注出钢,得到gh690合金电极;
[0066]
步骤s6,电极表面精整:将gh690合金电极进行切头尾、表面磨光处理,以达到电渣重熔炉冶炼条件;
[0067]
步骤s7:电渣重熔:在4吨保护气氛电渣炉中对精整后的gh690合金电极进行电渣重熔,得到gh690合金锭;其中,电渣重熔中的渣料组分包括:氟化钙:50%、氧化铝:20%、氧化钙:15%、氧化镁:10%、二氧化钛:5%。
[0068]
实施例2
[0069]
一种gh690合金的制备工艺,包括以下步骤:
[0070]
步骤s1:原材料预处理:原材料选用石墨碳、金属铬、纯铁、镍板、工业纯硅、金属锰、氮化铬、镍镁、镍钙,备足调料所需要的金属铝小块和金属钛小块,其中,对纯铁、镍板进行喷丸处理,对镍板进行切边,将氮化铬放置于加热炉内,在400℃下烘烤10h,确保预处理后的原材料表面干燥、清洁、无尘、无油污;
[0071]
步骤s2,加料:将镍板、石墨碳、金属铬、纯铁、工业纯硅通过侧加料的方式加入5吨真空感应炉坩埚中;
[0072]
步骤s3,熔融:给电,原材料开始升温,同时将熔炼室内的真空度抽至3.6pa,待原材料熔清后,进行第一次测温,所述熔清温度设为1500℃,搅拌使得钢液成分均匀,进行第一次取样并检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量。
[0073]
步骤s4,精炼:将熔炼室真空度抽至为0.420pa;精炼前期,将熔炼室升温至1520℃并保持恒温,精炼30min,进行第二次测温及第二次取样,检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量,并根据需要调整钢液中碳、铁的成分及铬的成分;继续精炼60min,进行第三次测温,调整钢液的温度,第三次取样并检测钢液中碳、铬、铝、铁、钛、硫、磷、氧、氮、氢的元素含量,根据需要调整钢液中碳、铬、铁的成分,并加入铝和钛,搅拌溶解均匀;继续精炼60min,进行第四次取样并检测钢液中碳、铬、锰、铝、铁、钛、硫、磷、氧、氮、氢的成分含量是否达到控制点,若未达到控制点,则继续调料,若达到控制点,则将熔炼室温度降低至1464℃,并保温30min;
[0074]
步骤s5,出钢浇注:将经步骤s4精炼后的钢液升温至1504℃,持续向熔炼室中通入氩气,并进行第四次测温,向钢液中加入金属锰、氮化铬,搅拌均匀后继续加入镍镁、镍钙,并再次搅拌,最后将钢液浇注出钢,得到gh690合金电极;
[0075]
步骤s6,电极表面精整:将gh690合金电极进行切头尾、表面磨光处理,以达到电渣重熔炉冶炼条件;
[0076]
步骤s7:电渣重熔:在4吨保护气氛电渣炉中对精整后的gh690合金电极进行电渣重熔,得到gh690合金锭;其中,电渣重熔中的渣料组分包括:氟化钙:50%、氧化铝:20%、氧化钙:15%、氧化镁:10%、二氧化钛:5%。
[0077]
实施例3
[0078]
一种gh690合金的制备工艺,包括以下步骤:
[0079]
步骤s1:原材料预处理:原材料选用石墨碳、金属铬、纯铁、镍板、工业纯硅、金属锰、氮化铬、镍镁、镍钙,备足调料所需要的金属铝小块和金属钛小块,其中,对纯铁、镍板进行喷丸处理,对镍板进行切边,将氮化铬放置于加热炉内,在400℃下烘烤10h,确保预处理后的原材料表面干燥、清洁、无尘、无油污;
[0080]
步骤s2,加料:将镍板、石墨碳、金属铬、纯铁、工业纯硅通过侧加料的方式加入5吨真空感应炉坩埚中;
[0081]
步骤s3,熔融:给电,原材料开始升温,同时将熔炼室内的真空度抽至6.5pa;待原材料熔清后,进行第一次测温,所述熔清温度设为1510℃,搅拌使得钢液成分均匀,进行第一次取样并检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量。
[0082]
步骤s4,精炼:将熔炼室真空度抽至为0.158pa;精炼前期,将熔炼室升温至1510℃
并保持恒温,精炼30min,进行第二次测温及第二次取样,检测钢液中碳、铬、钴、钼、铁、硅、硫、磷、氧、氮、氢的元素含量,并根据需要调整钢液中碳、铁及铬的成分含量;继续精炼60min,进行第三次测温,调整钢液的温度,第三次取样并检测钢液中碳、铬、铝、铁、钛、硫、磷、氧、氮、氢的元素含量,根据需要调整钢液中碳、铬、铁的成分含量,并加入铝和钛,搅拌溶解均匀;继续精炼60min,进行第四次取样并检测钢液中碳、铬、锰、铝、铁、钛、硫、磷、氧、氮、氢的成分含量是否达到控制点,若未达到控制点,则继续调料,若达到控制点,则将熔炼室温度降低至1480℃,并保温30min;
[0083]
步骤s5,出钢浇注:将经步骤s4精炼后的钢液升温至1510℃,持续向熔炼室中通入氩气,并进行第四次测温,向钢液中加入金属锰、氮化铬,搅拌均匀后继续加入镍镁、镍钙,并再次搅拌,最后将钢液浇注出钢,得到gh690合金电极;
[0084]
步骤s6,电极表面精整:将gh690合金电极进行切头尾、表面磨光处理,以达到电渣重熔炉冶炼条件;
[0085]
步骤s7:电渣重熔:在4吨保护气氛电渣炉中对精整后的gh690合金电极进行电渣重熔;其中,电渣重熔中的渣料组分包括:氟化钙:50%、氧化铝:20%、氧化钙:15%、氧化镁:10%、二氧化钛:5%。
[0086]
通过对实施例1

3提供的gh690合金锭的成分进行检测。具体地,选取相同质量相同部位的实施例1

3制备所得的gh690合金锭试样,根据《gb/t223钢铁及合金化学分析方法合集》标准提供的方法对3个试样中的碳(c)、铬(cr)、铁(fe)、硅(si)、锰(mn)、硫(s)、磷(p)、氧(o)、氮(n)、氢(h)等元素进行检测。实施例1

3所制得的gh690合金的具体测试参数详见下表1。
[0087]
表1实施例1

3中gh690合金的主要成分检测结果
[0088]
元素标准控制点实施例1实施例2实施例3碳(c)0.015~0.0250.018~0.0230.0210.0220.019铬(cr)28.5~31.029.4~29.829.4829.7629.53铁(fe)8.0~11.09.3~9.79.539.319.56硅(si)0.2~0.40.25~0.350.310.320.27锰(mn)0.2~0.40.25~0.350.290.30.28硫(s)≤0.003≤0.0015,越低越好0.00050.00110.0006磷(p)≤0.015≤0.008,越低越好0.00250.0060.0026氧(o) ≤0.0015,越低越好0.00050.0010.0008氮(n) 0.013~0.0170.01520.01430.0158氢(h) ≤0.0003,越低越好≤0.00010.00020.0001
[0089]
由表1可知,通过本发明实施例1

3所提供的gh690合金锭的成分稳定,在氮含量较高的前提下,将磷、硫、氧、氢等有害元素的含量控制到了极低水平,从而提高了gh690合金的质量,满足产品使用的要求。
[0090]
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献