一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种原位合成碳纳米相增强铜基复合涂层锅具及其制作方法与流程

2021-11-09 21:29:00 来源:中国专利 TAG:


1.本发明涉及锅具的制作技术领域,尤其涉及一种原位合成碳纳米相增强铜基复合涂层锅具及其制作方法。


背景技术:

2.金属基复合材料是以金属或合金相为基体,颗粒晶须、短纤维、连续纤维为强化相的种材料。具有很强的可设计性自由度,通过合理选择基体合金增强相种类以及制备工艺和参数,可实现良好的复合效应,从而得到性能优异的复合材料。碳纳米管超强的力学性能可以极大改善复合材料的强度和韧性。碳纳米管增强金属基复合材料是最近几年来迅速发展起来的新型材料,具有优良的理化和力学性能。作为日常使用的锅具,如果使用碳纳米管增强金属基复合材料,可以显著提高锅具的使用性能。
3.现有技术中,关于使用在锅具上的纳米材料复合程度较低,难以发挥纳米材料的性能优势。如专利号为cn201910070492.4的一种制备耐磨不粘锅涂层的方法,其工艺为水100份、聚四氟乙烯20

40份、聚醚砜树脂24

40份,聚醚醚酮6

12份、聚甲基乙烯基硅氧烷2

5份、n,n

二甲基乙胺醛烷络合物0.003

0.1份加热到450

550℃,搅拌5

10h,然后向其中加入纳米氧化石墨烯1

3份,氟化石墨2

4份,云母粉2

4份,二硬脂酰氧异丙氧基铝酸酯0.5

1份,搅拌2

5h,然后加入涂层加强剂1.5

3.5份,即得到所述的耐磨不粘锅涂料,该涂层用于锅具。但是其中纳米氧化石墨烯是直接加入,与原料融合度低,对于涂层的耐受性提升较低。
4.又如专利号为cn201710032119.0的一种锅具及其制备方法和烹饪器具制备方法包括:步骤s10:将粉末状的原料混合,并使之微纳米化,形成微纳米级的混合粉末;步骤s20:将微纳米级的混合粉末放入模具中成型,得到锅具的坯体;步骤s30:将坯体置于炉子中烧结固化,得到锅具;其中,原料包括陶瓷粉末和金属颗粒。其使用的是纳米微粒熔炼,使得锅体结构晶体单一,在复杂环境中使用抗性较差。
5.所以,针对现有锅具制作中纳米材料使用的复合简单,研究一种针对性强的纳米复合材料提高锅体的性能极为重要。


技术实现要素:

6.本发明针对现有技术中的不足,提供了一种原位合成碳纳米相增强铜基复合涂层锅具及其制作方法,以针对性的复合碳纳米管材料,优化锅体制作参数,提高锅体性能。
7.为了解决上述技术问题,本发明通过下述技术方案得以解决:
8.一种原位合成碳纳米相增强铜基复合涂层锅具,所述锅具包括支撑层、硬化涂层;所述硬化涂层由以下物质制备得到:乙烯基树脂20

30份、聚四氟乙烯粉70

90份、氮化硅3

5份,氮化硼1

2份,原位合成碳纳米相增强铜基颗粒0.03

0.069份。
9.进一步的,所述支撑层为不锈钢、铝合金中的任意一种。
10.进一步的,所述硬化涂层厚度为30

50um。
11.进一步的,所述原位合成碳纳米相增强铜基颗粒的制备方法为:
12.(1)配置溶液
13.将氯化镍、氯化铁、氯化钴混合配置成饱和溶液,将饱和溶液稀释1

2倍,加热到40

45℃保温10

13min,将温度降低至5

8℃,在溶液中加入纳米铝粉和冰粒,搅拌6

10min得到溶液a备用;将氢氧化钠配置成质量分数20

25%的溶液;
14.(2)胶体制备
15.将氢氧化钠溶液缓慢倒入溶液a中,在30

35℃下以10

15r/min的速度搅拌30

40min,静置1

2h待胶体成型后,用真空抽滤收集胶体,所得胶体加入纯净水中浸泡2

3min,再次过滤,用纯净水继续冲洗胶体2

3次;
16.(3)催化剂成型
17.在氮气保护下,将胶体放置到焙烧炉中加热到130

140℃保温3

5h,将温度升高至220

240℃,保温1

2h得到氧化物粉末;在一氧化碳气氛下,将焙烧炉升温到580

620℃还原2

3h,收集所得粉末即为催化剂;
18.(4)原位合成碳纳米相
19.将催化剂均匀放置到瓷方舟中,铺平,将瓷方舟放置到管式炉中,在氮气保护下升高至300

350℃,持续加热10

15min,通入氢气,保持温度3

4h;将温度升高至600

630℃,通入氮气,20

30min后,以60

65ml/min的流速通入甲烷与载气,反应4

6h即可;
20.(5)碳纳米相铜置换
21.配置浓度为0.3

0.5mol/l的硫酸铜溶液,将上一步骤制得的粉末分批次加入溶液中,每次加入量为溶液质量的8

10%,每次加完搅拌20

30s,所有粉末加完,在30

40℃下,用500

600w的超声波处理20

30min,收集沉淀,用纯水冲洗2

3次,在200

250℃下烘干即可。
22.进一步的,步骤(2)中,所述氯化镍、氯化铁、氯化钴、铝粉、氢氧化钠的摩尔比为7

9:1

2:0.03:17:8

10。
23.进一步的,所述铝粉和冰粒的质量比为5:1

2。
24.进一步的,所述氢气的流速为200

230ml/min;所述载气由氢气和氩气按照质量比1:0.3

0.35混合而成;所述甲烷与载气的质量比为1:8

10。
25.本发明所述的原位合成碳纳米相增强铜基复合涂层锅具的制备方法,步骤如下:
26.(1)将乙烯基树脂、聚四氟乙烯粉融化,加入氮化硅、氮化硼、原位合成碳纳米相增强铜基颗粒混合均匀得到硬化涂层;
27.(2)将支撑层放置到酸液中冲洗、喷砂处理,在支撑层表面激光蚀刻出圆形刻痕,加热到300

400℃,锻压20

30min,经冲压成型,在表面喷涂硬化涂层即可。
28.进一步的,所述刻痕由中心向四周以环状递增进行排布。
29.进一步的,所述刻痕深度为20

30um。
30.有益效果:
31.本发明通过使用甲烷在催化剂作用下原位合成碳纳米管,利用催化剂本身低颗粒性的特点,使得碳纳米管在生长时在内部包覆金属颗粒。而且,本技术通过在催化剂前期使用反应活性高、催化活性敏感的铁、铝前期催化,使得碳纳米管充分包覆铁铝原子,提高包覆效果,然后在硫酸铜中使用浸没碳纳米管包覆的铁铝,将铜原子置换到碳纳米管内部,形
成均匀度好、包覆率高的原位合成碳纳米相增强铜基颗粒。利用原位合成碳纳米相增强铜基颗粒优良的力学性能和稳定的化学性质提高涂层的附着力和抗冲击性、高温稳定性,使得锅具在喷涂后具有更好的耐用性。
32.本发明通过使用氯化钴制备出含有钴元素的催化剂,利用钴原子与碳管之间存在较强作用力的特点,使得反应中碳管集中于钴原子一侧,使得碳管对镍、铁覆盖更少,得到更多的暴露可以保持催化剂的活性,促进甲烷反应中反应物沉积,提高碳纳米管的生长速率,使得制备出来的碳纳米管金属基材料得率更高,完整度好,利于提高锅具涂层的稳定性。
33.本发明通过在氯化镍、氯化铁、氯化钴混合配置成饱和溶液中加入冰粒,利用冰粒的融化吸热,使得氯化镍、氯化铁、氯化钴与氢氧化钠溶液混合之后的反应温度偏低,降低反应速率,减少铝粉的共聚,使得催化剂混合更为均匀。利于碳纳米管合成中在催化剂表面形成均匀覆盖体,提高碳纳米管金属基材料的均匀度,使得后续铜置换效率更高,进而达到显著提高锅具涂层性能强化锅具耐用性的目的。
34.本发明通过在载气中使用氩气,在一定限度上降低甲烷的浓度,使得反应物质的分散度更高,便于反应器中碳纳米管在多个点位生长,有效防止碳纳米管的重合共聚生长,显著提高碳纳米管金属基材料的得率和单晶体含量,进而达到提高锅具性能的目的。
35.本发明通过在支撑层表面喷砂处理后激光蚀刻,使得支撑层表面的粗糙晶体有刻痕交织,且刻痕的深度与纳米颗粒粉体接近,利于喷涂瞬间的涂料分散,使得涂层与锅具的支撑层抓附力更强,提高锅体的整体性,使得涂料的性能在锅体表面有更好的呈现。
附图说明
36.为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图进行论述,显然,在结合附图进行描述的技术方案仅仅是本发明的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图所示实施例得到其它的实施例及其附图。
37.图1是本发明锅具支撑层激光蚀刻图示;
38.图2是本发明实施例1碳纳米相增强铜基颗粒的xrd谱图;
39.图3是本发明实施例1碳纳米相增强铜基颗粒的eds谱图。
40.图中:1

刻痕、2

支撑层。
具体实施方式
41.以下将结合附图对本发明各实施例的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。基于本发明中所述的实施例,本领域普通技术人员在不需要创造性劳动的前提下所得到的所有其它实施例,都在本发明所保护的范围内。
42.实施例1
43.一种原位合成碳纳米相增强铜基复合涂层锅具,所述锅具包括支撑层、硬化涂层;所述支撑层为不锈钢;所述硬化涂层厚度为30um;所述硬化涂层由以下物质制备得到:乙烯基树脂20份、聚四氟乙烯粉70份、氮化硅3份,氮化硼1份,原位合成碳纳米相增强铜基颗粒
0.03份;
44.所述原位合成碳纳米相增强铜基颗粒的制备方法为:
45.(1)配置溶液
46.将氯化镍、氯化铁、氯化钴混合配置成饱和溶液,将饱和溶液稀释1倍,加热到40℃保温10min,将温度降低至5℃,在溶液中加入纳米铝粉和冰粒,搅拌6min得到溶液a备用;将氢氧化钠配置成质量分数20%的溶液;所述氯化镍、氯化铁、氯化钴、铝粉、氢氧化钠的摩尔比为7:1:0.03:17:8;所述铝粉和冰粒的质量比为5:1;
47.(2)胶体制备
48.将氢氧化钠溶液缓慢倒入溶液a中,在30℃下以10r/min的速度搅拌30min,静置1h待胶体成型后,用真空抽滤收集胶体,所得胶体加入纯净水中浸泡2min,再次过滤,用纯净水继续冲洗胶体2次;
49.(3)催化剂成型
50.在氮气保护下,将胶体放置到焙烧炉中加热到130℃保温3h,将温度升高至220℃,保温1h得到氧化物粉末;在一氧化碳气氛下,将焙烧炉升温到580℃还原2h,收集所得粉末即为催化剂;
51.(4)原位合成碳纳米相
52.将催化剂均匀放置到瓷方舟中,铺平,将瓷方舟放置到管式炉中,在氮气保护下升高至300℃,持续加热10min,通入氢气,保持温度3h;将温度升高至600℃,通入氮气,20min后,以60ml/min的流速通入甲烷与载气,反应4h即可;
53.所述氢气的流速为200ml/min;所述载气由氢气和氩气按照质量比1:0.3混合而成;所述甲烷与载气的质量比为1:8;
54.(5)碳纳米相铜置换
55.配置浓度为0.3mol/l的硫酸铜溶液,将上一步骤制得的粉末分批次加入溶液中,每次加入量为溶液质量的8%,每次加完搅拌20s,所有粉末加完,在30℃下,用500w的超声波处理20min,收集沉淀,用纯水冲洗2次,在200℃下烘干即可;
56.本实施例所述复合涂层锅具的制备方法为:
57.(1)将乙烯基树脂、聚四氟乙烯粉融化,加入氮化硅、氮化硼、原位合成碳纳米相增强铜基颗粒混合均匀得到硬化涂层;
58.(2)将支撑层放置到酸液中冲洗、喷砂处理,在支撑层表面激光蚀刻出圆形刻痕,加热到300℃,锻压20min,经冲压成型,在表面喷涂硬化涂层即可;所述刻痕由中心向四周以环状递增进行排布;所述刻痕深度为20um。
59.由图2、图3可以看出,在加入硫酸铜溶液置换之后,碳纳米相增强铜基颗粒依然存有铁、镍、铝,显然在颗粒中铜的置换反应得到有序推进,使得到的碳纳米相增强铜基颗粒中铁、镍、铝、铜合金融合性好。
60.实施例2
61.一种原位合成碳纳米相增强铜基复合涂层锅具,所述锅具包括支撑层、硬化涂层;所述支撑层为铝合金中;所述硬化涂层厚度为50um;所述硬化涂层由以下物质制备得到:乙烯基树脂30份、聚四氟乙烯粉90份、氮化硅5份,氮化硼2份,原位合成碳纳米相增强铜基颗粒0.069份;
62.所述原位合成碳纳米相增强铜基颗粒的制备方法为:
63.(1)配置溶液
64.将氯化镍、氯化铁、氯化钴混合配置成饱和溶液,将饱和溶液稀释2倍,加热到45℃保温13min,将温度降低至8℃,在溶液中加入纳米铝粉和冰粒,搅拌10min得到溶液a备用;将氢氧化钠配置成质量分数25%的溶液;所述氯化镍、氯化铁、氯化钴、铝粉、氢氧化钠的摩尔比为9:2:0.03:17:10;所述铝粉和冰粒的质量比为5:2;
65.(2)胶体制备
66.将氢氧化钠溶液缓慢倒入溶液a中,在35℃下以15r/min的速度搅拌40min,静置2h待胶体成型后,用真空抽滤收集胶体,所得胶体加入纯净水中浸泡3min,再次过滤,用纯净水继续冲洗胶体3次;
67.(3)催化剂成型
68.在氮气保护下,将胶体放置到焙烧炉中加热到140℃保温5h,将温度升高至220℃,保温1h得到氧化物粉末;在一氧化碳气氛下,将焙烧炉升温到580℃还原2h,收集所得粉末即为催化剂;
69.(4)原位合成碳纳米相
70.将催化剂均匀放置到瓷方舟中,铺平,将瓷方舟放置到管式炉中,在氮气保护下升高至300℃,持续加热10min,通入氢气,保持温度3h;将温度升高至600℃,通入氮气,20min后,以60ml/min的流速通入甲烷与载气,反应4h即可;
71.所述氢气的流速为230ml/min;所述载气由氢气和氩气按照质量比1:0.35混合而成;所述甲烷与载气的质量比为1:10;
72.(5)碳纳米相铜置换
73.配置浓度为0.5mol/l的硫酸铜溶液,将上一步骤制得的粉末分批次加入溶液中,每次加入量为溶液质量的10%,每次加完搅拌30s,所有粉末加完,在40℃下,用600w的超声波处理30min,收集沉淀,用纯水冲洗3次,在250℃下烘干即可;
74.本实施例所述复合涂层锅具的制备方法为:
75.(1)将乙烯基树脂、聚四氟乙烯粉融化,加入氮化硅、氮化硼、原位合成碳纳米相增强铜基颗粒混合均匀得到硬化涂层;
76.(2)将支撑层放置到酸液中冲洗、喷砂处理,在支撑层表面激光蚀刻出圆形刻痕,加热到400℃,锻压0min,经冲压成型,在表面喷涂硬化涂层即可;所述刻痕由中心向四周以环状递增进行排布;所述刻痕深度为30um。
77.实施例3
78.一种原位合成碳纳米相增强铜基复合涂层锅具,所述锅具包括支撑层、硬化涂层;所述支撑层为不锈钢;所述硬化涂层厚度为37um;所述硬化涂层由以下物质制备得到:乙烯基树脂23份、聚四氟乙烯粉77份、氮化硅4份,氮化硼1.5份,原位合成碳纳米相增强铜基颗粒0.049份;
79.所述原位合成碳纳米相增强铜基颗粒的制备方法为:
80.(1)配置溶液
81.将氯化镍、氯化铁、氯化钴混合配置成饱和溶液,将饱和溶液稀释1倍,加热到45℃保温10min,将温度降低至8℃,在溶液中加入纳米铝粉和冰粒,搅拌10min得到溶液a备用;
将氢氧化钠配置成质量分数20%的溶液;所述氯化镍、氯化铁、氯化钴、铝粉、氢氧化钠的摩尔比为9:1:0.03:17:10;所述铝粉和冰粒的质量比为5:2;
82.(2)胶体制备
83.将氢氧化钠溶液缓慢倒入溶液a中,在35℃下以10r/min的速度搅拌40min,静置1h待胶体成型后,用真空抽滤收集胶体,所得胶体加入纯净水中浸泡3min,再次过滤,用纯净水继续冲洗胶体2次;
84.(3)催化剂成型
85.在氮气保护下,将胶体放置到焙烧炉中加热到140℃保温3h,将温度升高至240℃,保温1h得到氧化物粉末;在一氧化碳气氛下,将焙烧炉升温到620℃还原2h,收集所得粉末即为催化剂;
86.(4)原位合成碳纳米相
87.将催化剂均匀放置到瓷方舟中,铺平,将瓷方舟放置到管式炉中,在氮气保护下升高至350℃,持续加热15min,通入氢气,保持温度3h;将温度升高至630℃,通入氮气,20min后,以65ml/min的流速通入甲烷与载气,反应4h即可;
88.所述氢气的流速为230ml/min;所述载气由氢气和氩气按照质量比1:0.3混合而成;所述甲烷与载气的质量比为1:10;
89.(5)碳纳米相铜置换
90.配置浓度为0.5mol/l的硫酸铜溶液,将上一步骤制得的粉末分批次加入溶液中,每次加入量为溶液质量的10%,每次加完搅拌20s,所有粉末加完,在40℃下,用500w的超声波处理30min,收集沉淀,用纯水冲洗2次,在250℃下烘干即可;
91.本实施例所述复合涂层锅具的制备方法为:
92.(1)将乙烯基树脂、聚四氟乙烯粉融化,加入氮化硅、氮化硼、原位合成碳纳米相增强铜基颗粒混合均匀得到硬化涂层;
93.(2)将支撑层放置到酸液中冲洗、喷砂处理,在支撑层表面激光蚀刻出圆形刻痕,加热到400℃,锻压20min,经冲压成型,在表面喷涂硬化涂层即可;所述刻痕由中心向四周以环状递增进行排布;所述刻痕深度为25um。
94.为验证本发明锅体的性能,设置如下对比例:
[0095][0096]
试验例1
[0097]
分别按照实施例1

3、对比例1

4制作锅具,按照测试方法gb9286

1998测试涂层的附着力,按照测试方法为gb1732

93测试耐冲击性,按照gb/t 1735

2009提供的方法检验锅具的热稳定性,保温时间为3h。
[0098][0099][0100]
由表可以看出,使用本发明方法的实施例1

2附着力均为0级,耐冲击性高于281.19kg
·
cm,热稳定性高于683℃。本发明方法制备的锅具性能良好,可以胜任生活场景中的频繁使用。
[0101]
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的。本发明的范围由所附权利要求进行限定,而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
[0102]
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献