一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

固体材料预紧力和温度的超声波双波测量方法、用途及设备与流程

2021-11-03 20:37:00 来源:中国专利 TAG:


1.本发明涉及超声波双波测量技术领域,具体地涉及一种固体材料预紧力和温度的超声波双波测量方法、用途及设备,尤其适用于螺栓轴力多次巡回检测。


背景技术:

2.超声波监测检测固体材料(例如螺栓、金属等)预紧力方法是通过向固体材料发射超声波,测量超声的声时差来推导固体材料的预紧力变化。超声声时差的变化非常容易受到固体材料温度以及温度不均匀的影响。
3.以风电螺栓为例,风电螺栓的预紧力检测和监测是保证风电叶片和塔筒安全的重要手段。风电螺栓预紧力的监测和检测通常用超声波测量声时的方法配铂铑温度传感器pt1000来测量螺栓上某点的温度,用这个测量的温度值来补偿超声波声速随温度的变化。由于现场温度的不均匀,导致螺栓本身温度的不均匀,螺栓的平均温度很难通过温度计单点准确测量得到,这样容易引起测量预紧力的温度补偿误差。例如对于长达数米的风机塔筒锚栓,其地面露出部分与地下部分的环境差异,都可能造成整个锚栓长度上的温度非常不均匀。又比如风机塔筒内部螺栓由于塔筒外阳光照射位置不同以及塔筒内部电器运行过程中的热辐射方向不均匀等原因,会发生整根螺栓温度分布不均匀的现象。
4.风电螺栓预紧力的超声波巡回检测通常是比螺栓预紧力超声在线监测成本更低的方法,但是这种方法要求每次测量螺栓预紧力时都记录螺栓的平均温度用于补偿测量螺栓预紧力的测量值,但是现有的方法中无法快速得到螺栓的平均温度,这在实际应用中非常不方便。
5.风电螺栓预紧力在线监测的超声波测量方法通常采用压电单波探头,每根螺栓配一个探头,每个探头需要配一只温度计。这增加了螺栓预紧力超声波方法监测设备的复杂性,而且配置的温度计通常只能测量螺栓上某一点的温度,无法获取螺栓整体的平均温度,而平均温度才是计算温度补偿需要用到的准确温度。一旦螺栓处于温度变化较快的环境,螺栓上的温度会变得非常不均匀,温度计的测量误差也会随之增大。
6.公告号为cn 111693190 a的发明专利公开了一种基于超声波的螺栓轴向应力测量装置,包括超声波测量装置,测量超声波在螺栓中的声时差;温度测量模块,测量螺栓温度;系数标定模块,通过所述超声波测量装置和温度测量模块至少测量三次超声波的声时差,根据矩阵公式确定系数;微处理器根据所述系数确定螺栓温度、轴向应力和声时差的函数关系,基于该函数关系确定所述螺栓的当前轴向应力。该方法使用超声波单波进行测量,并且至少测量三次超声波的声时差,需要多次测量螺栓温度,复杂度相对较高,成本也较高。


技术实现要素:

7.针对上述存在的技术问题,本发明目的是:提供了一种固体材料预紧力和温度的超声波双波测量方法、用途及设备,通过直接使用超声波单一种类的方法同时测量了固体
材料预紧力以及温度,排除了温度整体变化及温度不均匀变化对预紧力测量的影响。无需使用额外温度传感器测量固体材料温度来进行补偿,从而避免由于温度传感器测量误差、固体材料温度不均匀导致的温度测量误差引入预紧力测量误差,极大地提高了固体材料预紧力超声波巡检的速度与便捷性。同时,本发明也使用超声波这种单一的方法较高精度地代替了传统的温度计对固体温度的测量。
8.本发明的技术方案是:
9.一种固体材料预紧力和温度的超声波双波测量方法,包括以下步骤:
10.s01:获取固体材料在第一种状态下的温度t0及预紧力f0,以及在该状态下超声波双波的第一模态波声时t
s0
、第二模态波声时t
l0

11.s02:测量固体材料在未知状态下超声波双波的第一模态波时间t
s
和第二模态波时间t
l

12.s03:获取固体材料的第一模态波温度影响系数k
ts
、第二模态波温度影响系数k
tl
,以及相同规格和几何形状被测固体材料中的第一模态波预紧力影响系数k
fs
、第二模态波预紧力影响系数k
fl

13.s04:根据一阶泰勒近似得到超声波双波声时相对变化的关系为:
14.(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
fs
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(i)
15.(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
fl
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(ii)
16.其中,f为测量预紧力,t为测量温度;
17.联合公式(i)和(ii)解得测量预紧力f:
[0018][0019]
解得测量温度t:
[0020][0021]
优选的技术方案中,所述步骤s04之后还包括:
[0022]
s05:获取固体材料的第一模态波另一温度影响系数k
ts2
、第二模态波另一温度影响系数k
tl2
,以及相同规格和几何形状被测固体材料中的第一模态波另一预紧力影响系数k
fs2
、第二模态波另一预紧力影响系数k
fl2

[0023]
s06:根据二阶泰勒近似得到超声波双波声时相对变化的关系为:
[0024]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
ts2
·
(t

t0)2 k
fs
·
(f

f0) k
fs2
·
(f

f0)2ꢀꢀꢀꢀ
(iii)
[0025]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
tl2
·
(t

t0)2 k
fl
·
(f

f0) k
fl2
·
(f

f0)2ꢀꢀꢀ
(iv)
[0026]
s07:联合公式(iii)和(iv)解得测量预紧力f和测量温度t。
[0027]
优选的技术方案中,所述第一模态波和所述第二模态波为横波、纵波、表面波、导波、爬波或以上任意两种模态的组合波。
[0028]
优选的技术方案中,所述步骤s01中的数据通过测量得到或者查找记录数据得到。
[0029]
优选的技术方案中,所述步骤s03和s05中的数据通过标定数据库查找得到。
[0030]
将上述的固体材料预紧力和温度的超声波双波测量方法用于高强螺栓预紧力的定期超声波巡检,测量螺栓的预紧力和/或温度。
[0031]
将上述的固体材料预紧力和温度的超声波双波测量方法用于测量自由拉力状态下金属在高温状态下的轴向平均温度。
[0032]
将上述的固体材料预紧力和温度的超声波双波测量方法用于螺栓轴力的在线监测可以为每个在线监测超声波探头省掉一支铂铑温度计。
[0033]
将所述的固体材料预紧力和温度的超声波双波测量方法用于测量压力容器外壳的轴向平均预紧力及轴向平均温度,进而推算出压力容器内部的温度。
[0034]
本发明还公开了一种固体材料预紧力和温度的超声波双波测量设备,包括:
[0035]
数据获取/测量模块,获取固体材料在第一状态下的温度t0及预紧力f0,及在该状态下超声波双波的第一模态波声时t
s0
、第二模态波声时t
l0
、;
[0036]
测量模块,测量固体材料在未知状态下超声波双波的第一模态波时间t
s
和第二模态波时间t
l

[0037]
参数获取模块,获取固体材料的第一模态波温度影响系数k
ts
、第二模态波温度影响系数k
tl
,以及相同规格和几何形状被测固体材料中的第一模态波预紧力影响系数k
fs
、第二模态波预紧力影响系数k
fl

[0038]
建模计算模块,根据一阶泰勒近似得到超声波双波声时相对变化的关系为:
[0039]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
fs
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(i)
[0040]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
fl
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(ii)
[0041]
其中,f为测量预紧力,t为测量温度;
[0042]
联合公式(i)和(ii)解得测量预紧力f:
[0043][0044]
解得测量温度t:
[0045][0046]
优选的技术方案中,还包括精度提升模块,其包括:
[0047]
第二参数获取模块,获取固体材料的第一模态波另一温度影响系数k
ts2
、第二模态波另一温度影响系数k
tl2
,以及相同规格和几何形状被测固体材料中的第一模态波另一预紧力影响系数k
fs2
、第二模态波另一预紧力影响系数k
fl2

[0048]
第二建模计算模块,根据二阶泰勒近似得到超声波双波声时相对变化的关系为:
[0049]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
ts2
·
(t

t0)2 k
fs
·
(f

f0) k
fs2
·
(f

f0)2ꢀꢀꢀ
(iii)
[0050]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
tl2
·
(t

t0)2 k
fl
·
(f

f0) k
fl2
·
(f

f0)2ꢀꢀꢀ
(iv)
[0051]
联合求解模块,联合公式(iii)和(iv)解得测量预紧力f和测量温度t。
[0052]
优选的技术方案中,所述第一模态波和所述第二模态波为横波、纵波、表面波、导波、爬波或以上任意两种模态的组合波。
[0053]
优选的技术方案中,所述数据获取/测量模块中的数据通过测量得到或者查找记录数据得到。
[0054]
与现有技术相比,本发明的优点是:
[0055]
1、本发明的固体材料预紧力和温度的超声波双波测量方法,只需要通过采用当前
状态测量的双波声时,对比状态时的声波声时以及一些常数就可以同时得到预紧力的变化与平均温度的变化,计算方法简单,效率高,具有广泛的应用。通过算法直接使用超声波单一种类的方法同时测量了螺栓预紧力以及温度,排除了温度整体变化及温度不均匀变化对预紧力测量的影响。无需使用额外温度传感器测量螺栓温度来进行补偿,从而避免由于温度传感器测量误差、螺栓温度不均匀导致的温度测量误差引入预紧力测量误差。
[0056]
2、当温度的测量成为目标时,本发明也提供了一种抑制应力状态对温度测量影响的一种方法。这种方法可以推广到螺栓以外的物体或者材料仅仅用超声波单一种类方法来测量样品的温度。
[0057]
3、当需要同时测量螺栓的轴向平均预紧力和平均温度时,本方法提供了可靠的超声波手段可以同时测量螺栓的轴向平均预紧力和平均温度。该方法也适用于其它可以传播超声波的物体,比如可以用本发明提供的超声波双波方法来同时测量压力容器外壳在某一时刻的平均温度和平均轴向预紧力。当采用适当的压力容器外壳轴向应力模型以及温度梯度模型时,本发明提供的超声波单一种类的方法可以以较高精度同时测量压力容器内部的温度和压力。
附图说明
[0058]
下面结合附图及实施例对本发明作进一步描述:
[0059]
图1是本发明固体材料预紧力和温度的超声波双波测量方法的流程图;
[0060]
图2是本发明固体材料预紧力和温度的超声波双波测量设备的原理框图;
[0061]
图3是本发明超声测量温度与热电偶温度计测量几百摄氏度大范围温度的对比图。
[0062]
图4是本发明超声测量温度与铂铑温度计测量温度的对比图,测量的温度用于本发明超声波测量固体材料预紧力的温度补偿。
具体实施方式
[0063]
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
[0064]
如图1所示,一种固体材料预紧力和温度的超声波双波测量方法,包括以下步骤:
[0065]
s01:获取固体材料在第一状态下温度t0及预紧力f0,以及在该状态下超声波双波的第一模态波声时t
s0
、第二模态波声时t
l0

[0066]
s02:测量固体材料在未知状态下超声波双波的第一模态波时间t
s
和第二模态波时间t
l

[0067]
s03:获取固体材料的第一模态波温度影响系数k
ts
、第二模态波温度影响系数k
tl
,以及相同规格和几何形状被测固体材料中的第一模态波预紧力影响系数k
fs
、第二模态波预紧力影响系数k
fl

[0068]
s04:根据一阶泰勒近似得到超声波双波声时相对变化的关系为:
[0069]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
fs
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(i)
[0070]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
fl
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(ii)
[0071]
其中,f为测量预紧力,t为测量温度;
[0072]
联合公式(i)和(ii)解得测量预紧力f:
[0073][0074]
解得测量温度t:
[0075][0076]
一较佳的实施例中,当需要进一步提高s04的超声波温度测量和预紧力测量精度时,所述步骤s04之后还包括:
[0077]
s05:获取固体材料的第一模态波另一温度影响系数k
ts2
、第二模态波另一温度影响系数k
tl2
,以及相同规格和几何形状被测固体材料中的第一模态波另一预紧力影响系数k
fs2
、第二模态波另一预紧力影响系数k
fl2

[0078]
s06:根据二阶泰勒近似得到超声波双波声时相对变化的关系为:
[0079]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
ts2
·
(t

t0)2 k
fs
·
(f

f0) k
fs2
·
(f

f0)2ꢀꢀꢀ
(iii)
[0080]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
tl2
·
(t

t0)2 k
fl
·
(f

f0) k
fl2
·
(f

f0)2ꢀꢀꢀ
(iv)
[0081]
s07:选择联合公式(iii)和(iv)解得测量预紧力f和测量温度t。
[0082]
需要说明的是:步骤s07中在数学上有2组解,但是在物理上通常只有一组有实际物理意义。这组解比步骤s04中解出的测量预紧力和测量温度更加准确,当然计算也更加复杂些。当温度变化比较大(可以通过与阈值比较得到)或轴力变化范围比较大(可以通过与阈值比较得到)时,可以采用s05

s07的步骤来提高测量准确度。
[0083]
这里的第一模态波和所述第二模态波为横波、纵波、表面波、导波、爬波或者以上两种模态波中任意两种组合的波。一般常用为横波和纵波,或者横波和横波纵波的组合波,或者纵波和横纵波的组合波。
[0084]
这里的预紧力可以为轴力、载荷或者应力等等,当然应力在计算时需要乘以平均横截面积,以让公式中的系数保持不变。
[0085]
步骤s01中的数据可以通过数据库查找得到,或者由数据记录文件得到,或者进行一次超声波双波测量得到。
[0086]
步骤s03和s05中的数据通过标定数据库查找得到,k
ts
、k
ts2
、k
fs
、k
fs2
、k
tl
、k
tl2
、k
fl
、k
fl2
等都与具体材料和样品相关,是可以标定的比例常数。
[0087]
当将上述方法用于高强螺栓预紧力的定期超声波巡检测量螺栓的预紧力和/或温度时,一般都可以通过数据库查到。以上公式说明巡检时螺栓的预紧力可以只通过当前测量的双波声时以及一些常数就可以得到。这样就免去了使用温度计逐点测量温度的麻烦,大大提高了螺栓预紧力超声波巡检的效率。
[0088]
还可以将上述的固体材料预紧力和温度的超声波双波测量方法用于测量自由拉力状态下金属在高温状态下的轴向平均温度。
[0089]
还可以将上述的固体材料预紧力和温度的超声波双波测量方法用于螺栓预紧力超声波在线监测过程中的温度测量,省去了通常的每颗螺栓都需要的铂铑温度计硬件,提
高了本发明方法固体材料预紧力的温度补偿精度。
[0090]
还可以将上述的固体材料预紧力和温度的超声波双波测量方法用于测量压力容器外壳的轴向平均预紧力及轴向平均温度,辅以适当的压力容器外壳轴向应力模型以及温度梯度模型,进而可以推算出压力容器内部的温度和压力。
[0091]
如图2所示,本发明还公开了一种固体材料预紧力和温度的超声波双波测量设备,包括:
[0092]
数据获取/测量模块10,获取固体材料在第一状态下的温度t0及预紧力f0,及该状态下超声波双波的第一模态波声时t
s0
、第二模态波声时t
l0

[0093]
测量模块20,测量固体材料在未知状态下超声波双波的第一模态波时间t
s
和第二模态波时间t
l

[0094]
参数获取模块30,获取固体材料的第一模态波温度影响系数k
ts
、第二模态波温度影响系数k
tl
,以及相同规格和几何形状被测固体材料中的第一模态波预紧力影响系数k
fs
、第二模态波预紧力影响系数k
fl

[0095]
建模计算模块40,根据一阶泰勒近似得到超声波双波声时相对变化的关系为:
[0096]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
fs
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(i)
[0097]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
fl
·
(f

f0)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(ii)
[0098]
其中,f为测量预紧力,t为测量温度;
[0099]
联合公式(i)和(ii)解得测量预紧力f:
[0100][0101]
解得测量温度t:
[0102][0103]
较佳的,当需要进一步提高由一阶泰勒近似得到的结果的精度时,还包括精度提升模块,其包括:
[0104]
第二参数获取模块,获取固体材料的第一模态波另一温度影响系数k
ts2
、第二模态波另一温度影响系数k
tl2
,以及相同规格和几何形状被测固体材料中的第一模态波另一预紧力影响系数k
fs2
、第二模态波另一预紧力影响系数k
fl2

[0105]
第二建模计算模块,根据二阶泰勒近似得到超声波双波声时相对变化的关系为:
[0106]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
ts2
·
(t

t0)2 k
fs
·
(f

f0) k
fs2
·
(f

f0)2ꢀꢀꢀ
(iii)
[0107]
(t
l

t
l0
)/t
l0
=k
tl
·
(t

t0) k
tl2
·
(t

t0)2 k
fl
·
(f

f0) k
fl2
·
(f

f0)2ꢀꢀꢀ
(iv)
[0108]
联合求解模块,联合公式(iii)和(iv)解得测量预紧力f和测量温度t。在数学上有2组解,但是在物理上通常只有一组有实际物理意义。
[0109]
下标带0的数据可以通过数据库查找得到,或者由数据记录文件得到,或者进行一次超声波双波测量得到。其它常系数可以通过标定或者从数据库中得到。
[0110]
下面以高强螺栓为例说明一下测量方法:
[0111]
一种高强螺栓预紧力与温度的超声双波巡检方法,包括以下步骤:
[0112]
s01:将需要巡检的螺栓编号。
[0113]
s02:获取螺栓巡检前记录的每一颗螺栓以前任何一次双波测量预紧力时的横波声时t
s0
、纵波声时t
l0
、当时温度计测量出温度t0以及由当次测量得出的螺栓预紧力值f0;如果没有以前的记录,就用超声双波方法现场测量出这一组数据。
[0114]
s03:测量螺栓在巡检时刻的超声横波回波时间t
s
和纵波回波时间t
l
。假设巡检时真实的温度为t,真实的预紧力为f。
[0115]
s04:计算两次或者两个时刻的超声横波回波变化时间δt
s
=t
s

t
s0
和超声纵波回波变化时间δt
l
=t
l

t
l0
。两次温度变化记为δt=t

t0,两次预紧力值变化记为δf=f

f0。
[0116]
s05:在螺栓标定数据库中查找螺栓材料的横波温度影响系数k
ts
、纵波温度影响系数k
tl
,以及相同规格和几何形状被测螺栓中的横波预紧力影响系数k
fs
、纵波预紧力影响系数k
fl
。这些参数都是可以提前标定的材料学参数(也与螺栓的几何形状以及螺母的装配位置有关),在一阶泰勒的数学近似下比较完美地满足下面的关系式:
[0117]
δt
s
/t
s0
=k
ts
·
δt
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
[0118]
δt
l
/t
l0
=k
tl
·
δt
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
[0119]
δt
s
/t
s0
=k
fs
·
δf
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0120]
δt
l
/t
l0
=k
fl
·
δf
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
[0121]
其中δ表示本次测量的量与测量前获得的对应的量之差。
[0122]
s06:假设每一根具体的螺栓超声波双波声时的相对变化量只跟两个最显著的因素有关:温度和预紧力的变化。所以该具体的螺栓超声波双波声时相对变化在一阶泰勒近似下的数学表达式为:
[0123]
δt
s
/t
s0
=k
ts
·
δt k
fs
·
δf
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
[0124]
δt
l
/t
l0
=k
tl
·
δt k
fl
·
δf
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)
[0125]
求解上面2个表达式得出,
[0126][0127]
具体的分解算术表达式为,
[0128][0129][0130]
螺栓巡检时当前绝对的预紧力和温度为:
[0131][0132][0133]
s07:当需要进一步提高s06的超声波温度测量和预紧力测量精度时,根据二阶泰勒近似得到超声波双波声时相对变化的关系为:
[0134]
(t
s

t
s0
)/t
s0
=k
ts
·
(t

t0) k
ts2
·
(t

t0)2 k
fs
·
(f

f0) k
fs2
·
(f

f0)2ꢀꢀꢀ
(12)
=61℃。
[0155]
此时进行第三次一发一收超声测量,测得超声横波回波时间t
s
=83000ns和纵波回波时间t
l
=45282ns。所以δt
s
=t
s

t
s0
=480ns,δt
l
=t
l

t
l0
=190ns。根据公式(10)和(11)计算出结果为:
[0156]
f=16.4kn
[0157]
t=63.6℃
[0158]
上面计算得到的数值与独立方法获得的数值f’=0kn以及t’=61℃相差不大,在允许范围内。
[0159]
实施例3
[0160]
同实例2的高强度六角头螺栓m42x240,螺母安装好后,螺栓露出螺母25mm。已知螺栓材料为42crmoa,这种材料标定的k
ts
=1.35
×
10
‑4/℃,k
tl
=9.5
×
10
‑5/℃。对这种螺栓按照安装后露出螺母25mm的夹持长度进行拉力标定,标定结果为k
fs
=3.67
×
10
‑6/kn,k
fl
=9.93
×
10
‑6/kn。
[0161]
在室温21℃环境下,上述螺栓样品放置到拉伸台,已受静态轴向拉力f0=444kn,对该螺栓做第一次自发自收超声波测量测得超声横波回波时间t
s0
=165052ns和纵波回波时间t
l0
=90472ns,螺栓温度取环境温度t0=21℃。
[0162]
然后对螺栓样品的螺母进行部分松卸,并同时使用热风枪加热螺栓中间局部区域,此时拉伸台独立的传感器显示螺栓的轴向拉力为f’=348kn,我们以此独立的螺栓轴力作为后面用超声波方法计算的轴力值的参考。此时,螺栓中间加热部位使用温度传感器独立测量其局部温度为t’=62.6℃。
[0163]
此时进行第二次自发自收超声测量,测得超声横波回波时间t
s
=165172ns和纵波回波时间t
l
=90452ns。所以δt
s
=t
s

t
s0


120ns,δt
l
=t
l

t
l0
=20ns。利用公式(10)和(11)计算得到:
[0164]
f=344.3kn
[0165]
t=29.1℃
[0166]
计算出的螺栓拉力值与独立数值f’=348kn相差不大,在允许范围内。此实例证明即使螺栓出现局部温度的非常不均匀和温度突变,通过本发明方法仍然可以测得准确的螺栓轴力变化。t和t’相差较大,是因为t为超声测量的螺栓平均温度,t’为温度传感器测量的螺栓加热部位的局部温度。
[0167]
实施例4
[0168]
又有另一厂家的高强度六角头螺栓m42x255,螺母安装好后,夹持长度196mm。已知螺栓材料为42crmoa,这种材料标定的k
ts
=1.35
×
10
‑4/℃,k
tl
=9.5
×
10
‑5/℃。对这种螺栓已按照安装后夹持长度为196mm进行拉力标定,标定结果为k
fs
=3.86
×
10
‑6/kn,k
fl
=1.05
×
10
‑5/kn。
[0169]
在室温环境下,上述螺栓样品不受轴向拉力,即f0=0kn,对螺栓样品进行第一次自发自收超声测量,测得超声横波回波时间t
s0
=173578ns和纵波回波时间t
l0
=94860ns,通过温度传感器测量螺栓表面温度t0=26.6℃。
[0170]
然后将螺栓按照夹持长度为196mm在扭矩实验台上装好,使用液压扭矩扳手将螺栓拧紧。
[0171]
扭矩实验台上有一个独立的力传感器用来显示螺栓当前的轴力,即我们用独立的方法获得f’=634.22kn。当前位于螺栓杆中部的温度传感器测得螺栓温度没变化,即t’=26.6℃。
[0172]
此时进行第二次自发自收超声测量,测得超声横波回波时间t
s
=174028ns和纵波回波时间t
l
=95504ns。所以δt
s
=t
s

t
s0
=450ns,δt
l
=t
l

t
l0
=644ns。根据公式(10)和(11)计算出结果为:
[0173]
f=637.8kn
[0174]
t=27.55℃
[0175]
计算得到的数值与独立获得的数值f’=634.22kn非常接近,在允许范围内。t和t’相差0.95℃的原因是螺栓扭矩法施工,螺母与螺栓摩擦产生热量,导致螺栓局部温度升高,0.95℃为螺栓整体温度变化量。
[0176]
在上述扳手将螺栓拧紧过程中,同时使用超声单波方法实时测量螺栓拧紧过程的超声回波时间变化,从而达到实时测量螺栓轴力变化的目的。扳手停止时刻,横波变化时间和纵波变化时间δt
s1
=t
s

t
s0
=450ns,δt
l1
=t
l

t
l0
=644ns。根据公式(i)和(ii),分别计算使用单横波和单纵波测量的螺栓轴力f
s
=671kn和f
l
=646kn。由此可得出结论,使用超声单波方法与扳手配合实时测量螺栓预紧过程的轴力值,结果会受到局部温度升高的影响。扳手紧固前后各进行一次双波测试,根据公式(10)计算得到的轴力不受局部温度变化影响。在与扳手配合中使用单波与双波相结合的方法,使得单波测量的实时性和双波测量的准确性相互结合。
[0177]
实施例5
[0178]
将一块初始温度为38.5℃的铁基高温合金,加热到350℃,然后慢慢冷却。用热电偶温度计和可耐高温的电磁超声波双波设备同时测量温度的变化,得到的热电偶温度数据和超声波温度测量一阶近似结果如图3所示。由于以上测量方法的步骤s06中的温度变化范围非常巨大,一阶泰勒近似出现明显偏差,为了提高超声波测量温度的精度,采用步骤s07的温度变化二阶泰勒近似,结果也见图3。图3中通过步骤s07的温度二阶泰勒近似以后,超声波测量的温度与热电偶温度计测量的温度在300摄氏度的范围内最大相差不过5摄氏度,这说明本发明超声波双波测量方法可以独立地大范围内测量自由状态下高温金属的温度。
[0179]
实施例6
[0180]
在一水电站采用超声双波设备监测一顶盖螺栓预紧力,相对处于风电塔筒环境的螺栓,水电站内螺栓的环境温度变化极其缓慢,正好可以作为普通温度计与本发明采用的超声波温度计做温度测量对比。图4是利用本发明方法得到的超声波双波温度计测量结果与现场pt1000温度计测量的螺栓温度作的对比。由图可见,本发明提出的超声波双波方法测量的螺栓平均温度与用独立温度计测量的螺栓上某点的温度,或者说是环境温度一致性非常好,在环境温度变化10度的范围以内两种方法相互之间的测量误差没有超过0.5摄氏度。由于风电塔筒里面的螺栓温度一天之内变化较大较快,由通常采用的pt1000温度计单点测量的温度难以真实地反映螺栓的平均温度,所以本发明为螺栓的超声在线监测也提供了可靠的、方法类别单一的以及操作方便的温度测量方法。
[0181]
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何
修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献