一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种利用低温水热法合成的核壳结构粉体制备镁铝尖晶石透明陶瓷的方法

2023-02-02 02:25:13 来源:中国专利 TAG:

200mpa、1350-1600℃下热等静压烧结1-4h;
15.(10)将步骤(9)得到的陶瓷样品置于空气气氛中退火,退火后的陶瓷进行抛光处理,得到镁铝尖晶石透明陶瓷。
16.优选的,步骤(1)中的表面形貌调控剂为乙二胺四乙酸(edta),乙二胺四乙酸与mg(no3)2·
6h2o的摩尔比为1-1.5:1。
17.优选的,步骤(5)中所述洗涤沉淀的步骤是:先用去离子水洗涤2次,再用无水乙醇洗涤1次。
18.优选的,步骤(6)中所述恒温干燥温度为60-80℃,时间8-12h。
19.优选的,步骤(7)中所述干燥温度55-80℃,所述过筛的筛网目数为80-200目。
20.优选的,步骤(7)中所述球磨转速为185-250r/min,球磨时间为10-20h。
21.优选的,步骤(10)中所述退火温度1100-1300℃,退火处理6-15h。
22.与现有技术相比,本发明具有如下有益效果:
23.1、本发明采用低温水热法制备镁铝尖晶石粉体,该过程晶粒发育较完整,粉体纯度高,杂质含量少,与传统的固相反应法相比,该方法制备出的粉体所需要的煅烧温度要低得多,且制备出来的粉体粒径尺寸均匀,可达到15-55nm,且制备过程污染小。
24.2、本发明通过低温水热法合成的核壳结构相较于单一结构来讲化学稳定性好,与基质材料呈现出完全共格的界面特征,经过低温烧结和hip烧结后的镁铝尖晶石透明陶瓷的力学性能显著提高,其抗弯强度可以达到300
±
20mpa,硬度可以达到15.5
±
1.3gpa,在可见-红外波段(390-1100nm)的透过率可达到85%-86.5%。
25.3、本发明工艺流程简单,制备周期短,有利于降低成本,能够实现技术推广和商业推广。
附图说明
26.图1是本发明实施例1、2、3制备的镁铝尖晶石粉体的xrd图谱;
27.图2是本发明实施例1、2、3制备的镁铝尖晶石透明陶瓷的实物图;
28.图3是本发明实施例1、2、3制备的镁铝尖晶石透明陶瓷的透过率曲线;
29.图4是本发明实施例1制备的镁铝尖晶石粉体的tem图谱,其中最外层壳的厚度约为1.8nm。
30.图5是本发明实施例2制备的镁铝尖晶石粉体的tem图谱,其中最外层壳的厚度约为1.1nm。
31.图6是本发明实施例3制备的镁铝尖晶石粉体的tem图谱,其中最外层壳的厚度约为1.0nm。
具体实施方式
32.下面结合附图和具体实施例对本发明作进一步详细说明。
33.实施例1:制备mgo
·
1.2al2o334.一种利用低温水热法合成核壳结构粉体制备镁铝尖晶石透明陶瓷的方法,具体步骤如下:
35.(1)称取1mmol表面形貌调控剂edta于锥形瓶中,加入去离子水,放置于磁力搅拌
器上搅拌15min;
36.(2)按照化学式mgo
·
1.2al2o3中mgo和al2o3的摩尔比分别称量高纯度mg(no3)2·
6h2o、al(no3)3·
9h2o于锥形瓶中,之后加入去离子水,放置于磁力搅拌器上搅拌15min,搅拌均匀,先将1.0mmol mg(no3)2溶液与2.0mmol al(no3)3溶液混合,再用移液枪滴入步骤(1)中的溶液,继续搅拌15min;
37.(3)将步骤(2)所获得的的溶液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,放入烘箱,于150℃反应6h;
38.(4)将步骤(3)中反应釜的上清液倒掉,以5ml/min的速度将0.4mmolal(no3)3·
9h2o溶液缓慢滴入反应釜中,再次放入烘箱,于150℃反应16h;
39.(5)将步骤(4)中反应釜的上清液倒掉,用去离子水洗涤反应釜中沉淀2次,再用无水乙醇洗涤沉淀1次,最后用吸管将沉淀部分吸入离心管中,放入离心机中离心1min,即得到核壳结构粉体;
40.(6)将步骤(5)得到的核壳结构粉体恒温干燥,于马弗炉中400℃煅烧1.5h;
41.(7)将步骤(6)煅烧后的粉体加入乙醇溶液进行球磨,加入氧化钙作为烧结助剂,转速为185r/min,球磨时间为15h;将球磨后的浆料进行55℃干燥,100目过筛;
42.(8)将步骤(7)过筛后的粉体置于模具中,先干压后冷等静压成型,随后将素坯置于马弗炉中,于600℃素烧6h;
43.(9)将步骤(8)的素坯置于空气气氛中1400℃下无压烧结10h,再于150mpa、1450℃下热等静压烧结1h;
44.(10)将步骤(9)得到的陶瓷样品放入置于空气气氛中,在1300℃下退火处理6h,退火后的陶瓷进行抛光处理,得到所述的镁铝尖晶石透明陶瓷。
45.图1中的(b)为实施例1所制得的镁铝尖晶石粉体的xrd图,说明该方法制得的镁铝尖晶石粉体为纯相,无杂相。
46.图2中的1号样为实施例1所制备的镁铝尖晶石透明陶瓷的实物图,可以清楚地看到陶瓷下面的字母。
47.图3中的a线为实施例1所制备的镁铝尖晶石透明陶瓷的透过率曲线图,在近红外区域(1100nm)的透过率可以达到82.3%。
48.图4为实施例1所制备的镁铝尖晶石粉体的tem图,平均粒径约为55nm,其中核壳结构厚度约为1.8nm,且团聚少,晶粒分布均匀,呈现出完全共格的界面特征。
49.采用机械万能试验机对所制得的样品进行三点测试,其抗弯强度可达到285mpa,硬度可达14.2gpa。
50.实施例2:制备mgo
·
1.5al2o351.一种利用低温水热法合成核壳结构粉体制备镁铝尖晶石透明陶瓷的方法,具体步骤如下:
52.(1)称取1.5mmol表面形貌调控剂edta于锥形瓶中,加入去离子水,放置于磁力搅拌器上搅拌25min;
53.(2)按照化学式mgo
·
1.5al2o3中mgo和al2o3的摩尔比分别称量高纯度mg(no3)2·
6h2o、al(no3)3·
9h2o于锥形瓶中,之后加入去离子水,放置于磁力搅拌器上搅拌25min,搅拌均匀,先将1.0mmol mg(no3)2溶液与2.0mmol al(no3)3溶液混合,再用移液枪滴入步骤
(1)中的溶液,继续搅拌25min;
54.(3)将步骤(2)所获得的的溶液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,放入烘箱,于120℃反应4h;
55.(4)将步骤(3)中反应釜的上清液倒掉,以3ml/min的速度将1.0mmolal(no3)3·
9h2o溶液缓慢滴入反应釜中,再次放入烘箱,于120℃反应24h;
56.(5)将步骤(4)中反应釜的上清液倒掉,用去离子水洗涤反应釜中沉淀2次,再用无水乙醇洗涤沉淀1次,最后用吸管将沉淀部分吸入离心管中,放入离心机中离心1min,即得到核壳结构粉体;
57.(6)将步骤(5)得到的核壳结构粉体恒温干燥,于马弗炉中300℃煅烧2h;
58.(7)将步骤(6)煅烧后的粉体加入乙醇溶液进行球磨,加入氧化钙作为烧结助剂,转速为220r/min,球磨时间为10h;将球磨后的浆料进行80℃干燥,200目过筛;
59.(8)将步骤(7)过筛后的粉体置于模具中,先干压后冷等静压成型,随后将素坯置于马弗炉中,于700℃素烧8h;
60.(9)将步骤(8)的素坯置于空气气氛中1300℃下无压烧结15h,再于200mpa、1350℃下热等静压烧结2h;
61.(10)将步骤(9)得到的陶瓷样品放入置于空气气氛中,在1200℃下退火处理15h,退火后的陶瓷进行抛光处理,得到所述的镁铝尖晶石透明陶瓷。
62.图1中的(a)为实施例2所制得的镁铝尖晶石粉体的xrd图,说明该方法制得的镁铝尖晶石粉体为纯相,无杂相。
63.图2中的2号样为实施例2所制备的镁铝尖晶石透明陶瓷的实物图,可以清楚地看到陶瓷下面的字母。
64.图3中的c线为实施例2所制备的镁铝尖晶石透明陶瓷的透过率曲线图,在近红外区域(1100nm)的透过率可以达到86.5%。
65.所制得的镁铝尖晶石粉体的粒径由图5的tem图谱可以看出约为15nm,核壳厚度约为1.1nm,并观察到其晶粒分布均匀,采用机械万能试验机对所制得的样品进行三点测试,其抗弯强度可达到320mpa,硬度可达16.8gpa。
66.实施例3:制备mgo
·
2al2o367.一种利用低温水热法合成核壳结构粉体制备镁铝尖晶石透明陶瓷的方法,具体步骤如下:
68.(1)称取1.2mmol表面形貌调控剂edta于锥形瓶中,加入去离子水,放置于磁力搅拌器上搅拌35min;
69.(2)按照化学式mgo
·
2al2o3中mgo和al2o3的摩尔比分别称量高纯度mg(no3)2·
6h2o、al(no3)3·
9h2o于锥形瓶中,之后加入去离子水,放置于磁力搅拌器上搅拌35min,搅拌均匀,先将1.0mmol mg(no3)2溶液与2.0mmol al(no3)3溶液混合,再用移液枪滴入步骤(1)中的溶液,继续搅拌35min;
70.(3)将步骤(2)所获得的的溶液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,放入烘箱,于180℃反应8h;
71.(4)将步骤(3)中反应釜的上清液倒掉,以4ml/min的速度将2.0mmolal(no3)3·
9h2o溶液缓慢滴入反应釜中,再次放入烘箱,于180℃反应12h;
72.(5)将步骤(4)中反应釜的上清液倒掉,用去离子水洗涤反应釜中沉淀2次,再用无水乙醇洗涤沉淀1次,最后用吸管将沉淀部分吸入离心管中,放入离心机中离心1min,即得到核壳结构粉体;
73.(6)将步骤(5)得到的核壳结构粉体恒温干燥,于马弗炉中600℃煅烧1h;
74.(7)将步骤(6)煅烧后的粉体加入乙醇溶液进行球磨,加入氧化钙作为烧结助剂,转速为250r/min,球磨时间为20h;将球磨后的浆料进行70℃干燥,80目过筛;
75.(8)将步骤(7)过筛后的粉体置于模具中,先干压后冷等静压成型,随后将素坯置于马弗炉中,于800℃素烧10h;
76.(9)将步骤(8)的素坯置于空气气氛中1500℃下无压烧结6h,再于120mpa、1600℃下热等静压烧结4h;
77.(10)将步骤(9)得到的陶瓷样品放入置于空气气氛中,在1100℃下退火处理10h,退火后的陶瓷进行抛光处理,得到所述的镁铝尖晶石透明陶瓷。
78.图1中的(c)为实施例3所制得的镁铝尖晶石粉体的xrd图,说明该方法制得的镁铝尖晶石粉体为纯相,无杂相。
79.图2中的3号样为实施例3所制备的镁铝尖晶石透明陶瓷的实物图,可以清楚地看到陶瓷下面的字母。
80.图3中的b线为实施例3所制备的镁铝尖晶石透明陶瓷的透过率曲线图,在近红外区域(1100nm)的透过率可以达到85.0%。
81.所制得的镁铝尖晶石粉体的粒径由图6的tem图谱可以看出约为48nm,核壳厚度约为1.0nm,并观察到其晶粒分布均匀,采用机械万能试验机对所制得的样品进行三点测试,其抗弯强度可达到300mpa,硬度可达15.5gpa。
82.以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献