一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种热防护材料及其制备方法

2023-01-15 08:01:37 来源:中国专利 TAG:


1.本发明总体地涉及热防护材料技术领域,具体涉及一种热防护材料及其制备方法。


背景技术:

2.目前存在的热防护材料,如典型的气凝胶隔热材料,其热导率很低,一般小于0.1w/m
·
k。纯粹的气凝胶很脆,不能满足实际应用需求,因此,通常在气凝胶中引入纤维对其进行强韧化。纤维增强的气凝胶,一定程度改善了纯气凝胶的脆性,使其强度得到了一定程度的提升,在航空航天等领域得到了广泛的应用。公开号为cn101041770a的中国发明专利提供了一种耐高温al2o3气凝胶隔热复合材料的制备方法,将制备的al2o3气凝胶引入无机陶瓷纤维毡/无机陶瓷纤维预制件中,得到的隔热材料800℃下的热导率为0.048~0.05w/m
·
k,1000℃下的热导率为0.063~0.069w/m
·
k。尽管如此,纤维增强的气凝胶其强度仍然较低,约为1mpa,离能承受一定载荷的结构件应用还相距甚远。
3.另一方面,以c/sic复合材料、sic/sic复合材料为代表的防热结构件,由于其优异的耐温性能和较强的高温强度,在高速飞行器、航空发动机热端部件等领域得到了广泛的应用。但是,此类陶瓷基复合材料的热导率通常较高,比气凝胶隔热材料高两三个数量级。
4.不难发现,尽管气凝胶材料的隔热性能优异,但是其几乎没有承载能力;而以c/sic复合材料、sic/sic复合材料为代表的陶瓷基复合材料,其力学性能(承载性能)优异,但其隔热性能又偏低。在可重复使用空间飞行器等某些典型的应用场景,迫切需要一种新型的热防护材料,要求其既具有一定的承载能力同时又具有良好的隔热性能。


技术实现要素:

5.本发明的目的是提供一种热防护材料及其制备方法,所述热防护材料耐高温兼具低热导率、高强度:耐高温氧化性能优良,抗弯强度高,同时具有较低的热导率,其制备工艺简单。
6.本发明的技术方案是,一种热防护材料,它包括纤维增强体、纤维增强体表面的c界面、sic基体和al2o3气凝胶,所述sic基体和al2o3气凝胶填充和包裹于所述纤维增强体和增强体表面的c界面,所述纤维增强体包括c纤维预制件和/或sic纤维预制件。
7.进一步的,所述纤维增强体在热防护材料中的体积分数范围为:35-45%;所述c界面的厚度范围为50nm~2μm;所述sic基体占防护材料的重量百分比为:50-60%;所述al2o3气凝胶占防护材料的重量百分比为:2-5%。
8.进一步的,所述热防护材料的耐高温范围为:800~1200oc、低热导率范围为:0.6-1.0w/m
·
k,抗弯强度为:80-180mpa。
9.进一步的,所述氧化铝气凝胶为掺杂有遮光剂的氧化铝气凝胶,所述遮光剂包括钛白粉和/或高岭土粉,所述遮光剂占所述al2o3气凝胶的质量百分比范围为0.5-2%。
10.本发明同时提供了上述热防护材料的制备方法,所述热防护材料由纤维增强体采
用cvi pip联用工艺制备。
11.进一步的,上述方法具体包括以下步骤:步骤一:将纤维增强体置于沉积炉中,采用cvi工艺,以丙烯为碳源,进行纤维表面c界面的沉积,得到表面形成c界面的陶瓷纤维预制件;步骤二:采用pip工艺,将步骤一所得的预制件置于真空罐中,在真空环境下引入聚碳硅烷先驱体,进行浸渍;步骤三:将步骤二中的浸渍后的预制件固化;步骤四:将步骤三中固化后的预制件置于裂解炉中裂解;步骤五:循环步骤二~四,直至得到的中间体的抗弯强度大于80mpa,得到陶瓷基复合材料;步骤六:将步骤五所得的陶瓷基复合材料与al2o3溶胶混合,静置形成凝胶,加入醇溶剂后老化,然后进行干燥,得到所述热防护材料。
12.进一步的,上述步骤一中,纤维表面c界面的沉积的工艺条件为:在800-1000℃温度下、2-5kpa的压力下进行;所述步骤二中,真空浸渍的时间为4~8h。
13.进一步的,上述步骤三中,固化是指置于120-180℃下空气气氛中4h。
14.进一步的,上述步骤四中,裂解的工艺条件是指在氩气气氛下于置于800~1200℃的范围内1h。
15.进一步的,上述步骤六中,陶瓷基复合材料与al2o3溶胶混合后静置的时间为0.5~5h;所述醇溶剂包括无水乙醇异丙醇、仲丁醇中的一种,所述老化的时间≥24h。
16.本发明采用纤维预制件,通过化学气相渗透(cvi)工艺引入一定厚度热解碳界面相,随后采用先驱体浸渍裂解(pip)工艺引入一定量非晶态的sic基体形成多孔骨架中间体,使其具备相对较高的力学性能;最后,在多孔骨架中间体复合气凝胶,进一步降低其热导率。
17.本发明的先进性在于:通过先驱体浸渍裂解(pip)工艺制备具有一定强度的连续纤维增强的陶瓷基复合材料多孔中间体,在此基础上引入气凝胶,所制备的材料不仅具有连续纤维陶瓷基复合材料所具备的耐高温抗氧化性能以及优良的力学性能,而且因为气凝胶的引入降低了材料的热导率,使得该材料成为一种新型的材料,除了具有防隔热性能之外,还能承受一定的载荷,在航空航天领域中具有更为广阔的应用前景。
附图说明
18.从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:图1为实施例1所制得热防护材料的低倍sem图;图2为实施例1所制得热防护材料的高倍sem图;图3为实施例1所制得热防护材料的面扫图所得的各元素含量。
19.图4为实施例3所制得热防护材料的sem图,其中(a)为低倍sem图、(b)为高倍sem图、(c)为图4(b)的面扫图所得的各元素含量。
具体实施方式
20.为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
21.实施例1:一种c/sic-al2o3复合材料,其制备方法包括以下步骤:步骤一:取一块尺寸为200*200*4.5mm,编织方式为2.5d的c纤维预制件,经除胶后采用cvi工艺,丙烯为c源,在编织件的c纤维上生成层c界面层;步骤二:以pcs二甲苯溶液作为先驱体浸渍液,将步骤一所得的具有c界面的c纤维预制件置入真空浸渍罐中进行真空浸渍7h;步骤三:将步骤二浸渍后的预制件在空气气氛下缓慢升温150℃固化4h;步骤四:将步骤三固化后的预制件置入裂解炉中,在ar气氛下1100℃进行裂解1h,如此便引入了1个周期的sic基体;步骤五:重复步骤二4至6个周期后,得到c/sic复合材料多孔中间体;步骤六:将步骤五所得的c/sic复合材料多孔中间体与al2o3溶胶混合,静置0.5~5h形成凝胶,加入无水乙醇后老化24h以上,然后进行干燥,便可得到一种耐高温兼具低热导率、高强度热防护材料。
22.本实施例中得到的c/sic-al2o3复合材料的sem低倍图如图1所示可以观察到复合材料中c纤维的形貌;高倍sem图如图2所示,可以清楚地看出al2o3气凝胶的纳米颗粒;面扫图所得的各元素含量如图3所示;所得复合材料中c界面厚度约为150nm,得到的c/sic-al2o3复合材料密度为1.60g/cm3,抗弯强度约100.66
±
9.00mpa,热导率为0.63w/m
·
k。
23.实施例2:一种c/sic-al2o3复合材料的制备方法,包括以下步骤:步骤一:取一块尺寸为200*200*12mm,编织方式为2.5d的c纤维预制件,经除胶后采用cvi工艺,丙烯为c源,在编织件的c纤维上沉积一层c界面层;步骤二:以pcs二甲苯溶液作先驱体为浸渍液,将步骤一所得的具有c界面的c纤维预制件置入真空浸渍罐中进行真空浸渍7h;步骤三:将步骤二浸渍后的预制件在空气气氛下缓慢升温150℃固化4h;步骤四:将步骤三固化后的预制件置入裂解炉中,在ar气氛下1200℃进行裂解1h,如此便引入了1个周期的sic基体;步骤五:重复步骤二4至6个周期后,得到c/sic复合材料;步骤六:将步骤二所得的c/sic复合材料与al2o3溶胶混合,静置0.5~5h形成凝胶,加入无水乙醇后老化24h以上,然后进行干燥,便可得到一种耐高温兼具低热导率、高强度热防护材料。
24.本实施例中得到的c/sic-al2o3复合材料中c界面厚度为200nm,得到的c/sic-al2o3复合材料密度为1.56g/cm3,抗弯强度约187.00
±
31.20mpa,热导率为0.66w/m
·
k。
25.实施例3:一种c/sic-al2o3复合材料的制备方法,包括以下步骤:步骤一:取一块尺寸为200*160*30mm的针刺整体碳纤维毡,经cvi工艺毡制备的c/c复合材料,c界面厚度约1.75μm,密度约为0.99g/cm3;
步骤二:以pcs二甲苯溶液作为先驱体浸渍液,采用pip工艺,将步骤一所获得固形后的编织件首先进行真空浸渍7h左右,然后在空气气氛下7h升温150℃固化1h,最后在ar气氛下1200℃进行裂解1h,如此便引入了1个周期的sic基体,反复2个周期,得到c/sic复合材料;步骤三:将步骤二所得的c/sic复合材料与al2o3溶胶混合,静置0.5~5h形成凝胶,加入无水乙醇后老化24h以上,然后进行干燥,便可得到一种耐高温兼具低热导率、高强度热防护材料。
26.本实施例中得到的c/sic-al2o3复合材料的sem图如图4所示,其中(a)为sem低倍图,从图中可以观察到复合材料中c纤维的形貌,(b)为高倍sem图,从图中可以清楚地看出al2o3气凝胶的纳米颗粒,(c)为图4(b)的面扫图所得的各元素含量。所得c/sic-al2o3复合材料的密度为1.34g/cm3,抗弯强度约93.09
±
8.39mpa,热导率为0.97w/m
·
k。
27.实施例4:一种sic/sic-al2o3复合材料的制备方法,包括以下步骤:步骤一:取一块尺寸为200*100*12mm,编织方式为sic布叠层的sic纤维预制件,经除胶后采用cvi工艺,丙烯为c源,在编织件的c纤维上沉积一层c界面层;步骤二:以液态pcs作为浸渍液,将步骤一所得的具有c界面的c纤维预制件置入真空浸渍罐中进行真空浸渍7h;步骤三:将步骤二浸渍后的预制件在惰性气氛下缓慢升温150℃固化2h;步骤四:将步骤三固化后的预制件置入裂解炉中,在ar气氛下1200℃进行裂解1h,如此便引入了1个周期的sic基体;步骤五:重复步骤二3至5个周期后,得到sic/sic复合材料;步骤六:将步骤二所得的c/sic复合材料与al2o3溶胶混合,静置0.5~5h形成凝胶,加入无水乙醇后老化24h以上,然后进行干燥,便可得到一种耐高温兼具低热导率、高强度热防护材料。
28.本实施例中得到的sic/sic-al2o3复合材料中c界面厚度为200nm,得到的sic/sic-al2o3复合材料密度为1.87g/cm3,抗弯强度约65.66
±
12.07mpa。
29.以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献