一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂及其制备方法和应用

2022-11-16 16:34:02 来源:中国专利 TAG:


1.本发明具体涉及一种四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂及其制备方法和应用,属于纳米材料制备领域。


背景技术:

2.金属酞菁化合物(mpcs)是中心内嵌金属离子的芳香族杂环共轭大环化合物,18个π电子云交错排列在碳原子和氮原子与四吡咯环上,具有与卟啉分子相类似的结构。由于mpcs同时具有18电子给体和内腔金属离子电子受体特殊结构,因此被广泛应用于电致变色、光伏电池、化学传感器、光敏剂液晶材料、光动力治疗和催化剂等领域。然而,酞菁作为催化剂,在催化氧化反应中,酞菁的主要缺点一是溶解度较低,二是它们在催化氧化过程中容易聚合形成二聚体,这将导致催化活性显著降低。因此,设计和合成新的杂化材料以防止酞菁聚集变得非常迫切和必要。碳纳米管具有较好的机械、电子和光学性能,在高强度的复合材料、纳米材料、微机械、存储材料、电子器件和储氢材料等方面有着广泛的应用。有研究表明,由于多壁碳纳米管具有较大的比表面积、特殊的中空内部结构及其优异的电子性能,其可作为催化剂载体防止催化剂的聚集从而增加催化活性位点并提高催化活性。运用化学接枝法将酞菁固定在多壁碳纳米管表面可以有效阻止酞菁的聚集,从而增强了酞菁的催化活性。其为设计和开发具有更高催化性能的复合材料开辟了新的机遇。


技术实现要素:

3.本发明要解决的技术问题是:基于上述问题,本发明提供四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂及其制备方法和应用。
4.本发明解决其技术问题所采用的一个技术方案是:一种四取代3-(4-氨基) 苯氧基酞菁铜/多壁碳纳米管复合催化剂,用于苯乙烯催化氧化,由四取代3-(4
‑ꢀ
氨基)苯氧基酞菁铜和多壁碳纳米管复合而成,四取代3-(4-氨基)苯氧基酞菁铜结构式如下所示:
5.6.本发明的一种四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂的制备方法,包括以下步骤:
7.多壁碳纳米管的酸化预处理:将多壁碳纳米管,用50-70%(质量浓度)浓硝酸(避免浓度过大反应剧烈而产生大量no2,缺乏实验安全性,同时也会造成碳纳米管质量损失)浸泡,并于80℃-100℃加热搅拌12h-24h,反应结束后冷却,用去离子水洗至中性,烘干后得到酸化多壁碳纳米管,对碳纳米管进行酸化处理,是为了增加其活性并去除杂质,使得其表面带有羟基、羧基等基团,这样增加了碳纳米管在溶剂中的分散性;
8.四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂的制备:称取预处理过的酸化碳纳米管,用二氯亚砜修饰(具体修饰方法为:将酸化碳纳米管浸入二氯亚砜,在90℃的条件下进行搅拌回流,在反应至少24h后,蒸干除去多余二氯亚砜),然后把溶有一定质量的四取代3-(4-氨基)苯氧基酞菁铜的 dmf溶液加入到反应容器中,待反应至少24h后,制备得到了四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂。
9.进一步地,四取代3-(4-氨基)苯氧基酞菁铜与多壁碳纳米管的质量比为 2:1-4:1。
10.进一步的,本发明还提供了四取代3-(4-氨基)苯氧基酞菁铜的制备方法,步骤包括:将3-(4-氨基)苯氧基邻苯二腈、乙酸铜、催化剂1,8-二氮杂二环[5,4,0] 十一碳-7-烯和溶剂正戊醇加入反应容器中,在氮气保护下加热搅拌,回流冷凝, 150℃反应24h;反应结束后冷却至室温,将其倒入甲醇溶液中析出绿色固体,静置过夜,抽滤,再往其中加入甲醇,搅拌抽滤,重复步骤至滤液接近无色为止,然后加入去离子水充分震荡后,抽滤,先后以丙酮、水为溶剂,用索式提取器分别提取48h,烘箱干燥得四取代3-(4-氨基)苯氧基酞菁铜酞菁铜纯品。
[0011]
进一步的,上述3-(4-氨基)苯氧基邻苯二腈的制备包括如下步骤:将一定量3-硝基邻苯二腈和对氨基苯酚溶解在溶剂(能够将反应底物充分溶解得有机溶剂,例如可以为dmf(n-n二甲基甲酰胺)或dmso)中并加入碳酸钾,在氮气保护下,室温搅拌反应(反应时间一般5h左右),反应结束后,纯化。
[0012]
更进一步的,纯化方法包括将反应液倒入去离子水中析出白色固体,抽滤,用去离子水洗涤至中性,再用去离子水煮微沸10min,过滤,重复五次至滤液无色,除去未反应的对氨基苯酚和3-硝基邻苯二腈,滤饼通过甲醇重结晶进行提纯,烘干得到3-(4-氨基)苯氧基邻苯二腈纯品;
[0013]
更进一步的,3-硝基邻苯二腈和对氨基苯酚的摩尔比为1:1。
[0014]
本发明还提供了四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂的应用,主要用于苯乙烯催化反应:在thf溶剂中,在四取代3-(4-氨基) 苯氧基酞菁铜/多壁碳纳米管复合催化剂作用下,tbhp为氧化剂氧化苯乙烯,获得苯甲醛。
[0015]
本发明的有益效果是:
[0016]
(1)本发明基于特定结构得金属酞菁,在酞菁环外围引入有较大体积的芳氧基时,通过简单的超声浸渍负载不能有效阻止酞菁分子间的聚集;基于化学接枝与碳纳米管形成复合材料,比简单的超声浸渍即物理吸附方法更能有效阻止分子间聚集,增多反应活性位点,提高活性;催化剂中cu的4s轨道最外层电子数仅为1,这有利于金属铜离子更容易与tbhp结合形成活性中间体,有利于氧原子的转移;因此对苯乙烯具有较好的催化氧化作用,
其催化活性要明显高于3-(4-氨基)苯氧基酞菁铜单独催化,可应用于工业中苯乙烯的催化。
[0017]
(2)本发明复合催化剂制备方法较为简单且纯度高,制备成本低。
[0018]
(3)本发明在苯乙烯的催化氧化进程中四取代3-(4-氨基)苯氧基酞菁铜/ 多壁碳纳米管复合催化剂协同thf溶剂的选用,能够实现在少量催化剂的添加的情况下,快速获得较高效苯乙烯氧化效果。
附图说明
[0019]
下面结合附图对本发明做进一步说明。
[0020]
图1是本发明实施例1制备得到的四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂的x射线衍射图。
[0021]
图2是本发明实施例1制备得到的四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂和多壁碳纳米管的透射电镜图;其中,a为多壁碳纳米管,b为四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化材料。
[0022]
图3是本发明实施例1、2制备得到的四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂催化苯乙烯的效果图。
[0023]
图4是本发明应用例中溶剂对苯乙烯催化反应的影响试验。
具体实施方式
[0024]
本发明不局限于下列具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其他多种具体实施方式实施本发明的,或者凡是采用本发明的设计结构和思路,做简单变化或更改的,都落入本发明的保护范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
[0025]
本发明下面结合实施例作进一步详述:
[0026]
实施例1
[0027]
(1)3-(4-氨基)苯氧基邻苯二腈的制备:将1.73g 3-硝基邻苯二腈(10 mmol)和1.09g对氨基苯酚(10mmol)溶解在30mldmf(n-n二甲基甲酰胺) 溶剂中并加入1.66g碳酸钾(12mmol),在氮气保护下,室温搅拌5h,反应结束后冷却至室温,将反应液倒入去离子水中析出白色固体,抽滤,用去离子水洗涤至中性,再用去离子水煮微沸10min,过滤,重复五次至滤液无色,除去未反应的对氨基苯酚和3-硝基邻苯二腈,滤饼通过甲醇重结晶进行提纯,烘干得到3-(4-氨基)苯氧基邻苯二腈纯品;
[0028]
(2)四取代3-(4-氨基)苯氧基酞菁铜的制备:将3-(4-氨基)苯氧基邻苯二腈(0.47g,2.00mmol)、乙酸铜(0.09g,0.50mmol)、催化剂1,8-二氮杂二环[5,4,0]十一碳-7-烯(0.3ml)和溶剂正戊醇(20ml)加入反应容器中,在氮气保护下加热搅拌,回流冷凝,150℃反应24h,反应结束后冷却至室温,将其倒入甲醇溶液中析出绿色固体,静置过夜,抽滤,再往其中加入甲醇,搅拌,抽滤,重复步骤至滤液接近无色为止,然后加入去离子水充分震荡后,抽滤,先后以丙酮、水为溶剂,用索式提取器分别提取48h,烘箱干燥得四取代3-(4
‑ꢀ
氨基)苯氧基酞菁铜纯品;
[0029]
(3)多壁碳纳米管的预处理:称取1g多壁碳纳米管,放入三口烧瓶中,加入150ml
(50-70wt%)的浓硝酸,80℃加热搅拌24h,反应结束后冷却,用水洗至中性,烘干后得到处理过的多壁碳纳米管;
[0030]
(4)四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管催化剂的制备:称取 0.1g预处理过的酸化碳纳米管,倒入烧瓶中,加入15ml二氯亚砜,在90℃的条件下进行搅拌回流,在反应24h后,把烧瓶中的二氯亚砜通过蒸馏蒸干,再把溶有0.3g四取代3-(4-氨基)苯氧基酞菁铜的30ml dmf溶液加入到反应容器中,待反应24h后,制备得到了四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂。
[0031]
实施例2
[0032]
(1)3-(4-氨基)苯氧基邻苯二腈的制备:将3.46g 3-硝基邻苯二腈(20 mmol)和2.18g对氨基苯酚(20mmol)溶解在30mldmso的溶剂中并加入3.32 g碳酸钾(24mmol),在氮气保护下,室温搅拌5h,反应结束后冷却至室温,将反应液倒入去离子水中析出白色固体,抽滤,用去离子水洗涤至中性,再用去离子水煮微沸10min,过滤,重复五次至滤液无色,除去未反应的对氨基苯酚和3-硝基邻苯二腈,滤饼通过甲醇重结晶进行提纯,烘干得到3-(4-氨基)苯氧基邻苯二腈纯品;
[0033]
(2)四取代3-(4-氨基)苯氧基酞菁铜的制备:将3-(4-氨基)苯氧基邻苯二腈(0.94g,4.00mmol)、乙酸铜(0.18g,1.00mmol)、催化剂1,8-二氮杂二环[5,4,0]十一碳-7-烯(0.6ml)和溶剂正戊醇(30ml)加入反应容器中,在氮气保护下加热搅拌,回流冷凝,150℃反应24h,反应结束后冷却至室温,将其倒入甲醇溶液中析出绿色固体,静置过夜,抽滤,再往其中加入甲醇,搅拌,抽滤,重复步骤至滤液接近无色为止,然后加入去离子水充分震荡后,抽滤,先后以丙酮、水为溶剂,用索式提取器分别提取48h,烘箱干燥得四取代3-(4
‑ꢀ
氨基)苯氧基酞菁铜纯品;
[0034]
(3)多壁碳纳米管的预处理:称取2g多壁碳纳米管,放入三口烧瓶中,加入250ml(50-70wt%)的浓硝酸,100℃加热搅拌12h,反应结束后冷却,用水洗至中性,烘干后得到处理过的多壁碳纳米管;
[0035]
(4)四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管催化剂的制备:称取 0.2g预处理过的酸化碳纳米管,倒入烧瓶中,加入30ml二氯亚砜,在90℃的条件下进行搅拌回流,在反应24h后,把烧瓶中的二氯亚砜通过蒸馏蒸干,再把溶有0.6g四取代3-(4-氨基)苯氧基酞菁铜的50ml dmf溶液加入到反应容器中,待反应24h后,制备得到了四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂。
[0036]
实施例1制备的四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂的晶相结构由日本理学d/max2500pc自转x-射线衍射仪分析,其中,x射线为cu靶电压40kv,电流100ma,步长为0.02
°
,扫描范围 10
°‑
80
°
。x射线衍射图谱如图1所示,3-(4-氨基)苯氧基酞菁铜特征峰明显,在用多壁碳纳米管负载后,对比于3-(4-氨基)苯氧基酞菁铜的特征衍射峰,3
‑ꢀ
(4-氨基)苯氧基酞菁铜/多壁碳纳米管特定衍射峰强度变弱,这说明多壁碳纳米管的负载使得四取代3-(4-氨基)苯氧基酞菁铜更好地分散,有效阻止了酞菁的聚集现象。采用日本jeol 2100型透射电子显微镜观察该四取代3-(4-氨基) 苯氧基酞菁铜/多壁碳纳米管复合催化剂的形貌,从图2透射电镜可以看出,多壁碳纳米管上有清晰可见的酞菁附着在上面,说明四取代3-(4-氨基)苯氧基酞菁铜在多壁碳纳米管上有效地分散,这样可以克服金属酞菁容易发生聚集现象从而降低催化效率的缺点。
[0037]
应用例
[0038]
苯乙烯催化反应:将实施例2得到的15mg cupc/mwcnts倒入25ml耐压管中,同时向耐压管中加入0.3g苯乙烯,1ml tbhb,5ml thf以及搅拌转子,将耐压管放入油浴锅中,当温度达到80℃时开始计时,反应6h后关闭加热装置。用吸管吸取2ml反应液到注射器中,用滤头分离cupc/mwcnts,然后加入丙酮稀释有机相。最后吸取0.4μl除水后的反应液通过具有火焰检测器和 0.32mm
×
0.25μm hp-5毛细管柱的气相色谱(gc)进行分析苯乙烯的转化率以及选择性,如图3所示。
[0039]
选用6种溶剂进行了筛选,于25ml封管中,0.3g苯乙烯,0.02g催化剂, 3ml tbhp和5ml溶剂在80℃下反应6h,发现thf效果最好,选用化学接枝法与碳纳米管结合比简单的超声浸渍即物理吸附方法更能有效阻止分子间聚集,增多反应活性位点,提高活性,具体结果见图4。
[0040]
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献