一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于金属特征的无光致抗蚀剂形成的电流体动力喷射打印和电镀的制作方法

2022-09-15 06:51:29 来源:中国专利 TAG:

用于金属特征的无光致抗蚀剂形成的电流体动力喷射打印和电镀
通过引用并入
1.pct申请表作为本技术的一部分与本说明书同时提交。如在同时提交的pct申请表中所标识的本技术要求享有其权益或优先权的每个申请均通过引用全文并入本文且用于所有目的。


背景技术:

2.制造半导体器件通常涉及一系列用于形成精细线互连件或其他金属特征的步骤。在涉及许多不同半导体处理设备的数个处理步骤期间可形成此类特征。例如,在3d封装领域,金属化可涉及在衬底上形成导电晶种层、在晶种层上形成光致抗蚀剂层、暴露和显影该光致抗蚀剂层以在其中定义图案、对衬底进行除渣以移除图案化特征内任何剩余的非所期望的光致抗蚀剂、以金属电镀衬底、剥除光致抗蚀剂、以及化学蚀刻移除先前受到光致抗蚀剂保护的任何暴露的晶种层。
3.这里提供的背景描述是为了总体呈现本公开的背景的目的。当前指定的发明人的工作在其在此背景技术部分以及在提交申请时不能确定为现有技术的说明书的各方面中描述的范围内既不明确也不暗示地承认是针对本公开的现有技术。


技术实现要素:

4.本文中的各种实施方案涉及用于电流体动力喷射打印及电镀的方法、装置、系统、墨水和电镀电解液。本文中所述的技术能以无光致抗蚀剂的方式形成金属特征,基本上简化了形成此类特征的处理方案且最少化相关的资本支出与处理成本。一般而言,本文中的技术使用包含一或多种电镀添加物,例如电镀加速剂或电镀抑制剂的特别墨水。选择性地以期望图案将墨水打印至衬底上,且添加物与衬底表面反应而变得强吸附至表面。在墨水干掉后,电镀衬底且来自经打印的墨水的强吸附的电镀添加物继续吸附于受到墨水打印的表面上并造成在衬底的经打印与未打印区域处提供不同电镀速率的优先电镀处理。不同的电镀速率形成金属特征。在电镀之后,可通过蚀刻使特征彼此电气隔离且空间隔离。
5.在公开的实施方案的一方面中,提供了一种在衬底上沉积金属的方法,所述方法包含:(a)接收包含晶种层的衬底,其中所述晶种层为导电的且在所述衬底的表面上暴露;(b)经由电流体动力喷射打印将墨水以图案打印至所述晶种层上,其中所述墨水包含溶解于溶剂中的电镀添加物,其中所述电镀添加物包含加速剂或抑制剂,其中所述电镀添加物强吸附至所述晶种层上;以及(c)经由优先沉积将金属电镀至所述衬底上,所述优先沉积在来自所述墨水的所述电镀添加物存在的位置处提供第一沉积速率并在来自所述墨水的所述电镀添加物不存在的位置处提供第二沉积速率,其中所述第一沉积速率不同于所述第二沉积速率。
6.在一些实施方案中,所述电镀添加物包含加速剂且所述第一沉积速率大于所述第二沉积速率,使得所述金属优先沉积在来自所述墨水的所述加速剂存在的位置处。在这些
以及其他情况下,所述加速剂可以包含具有至少一个巯基和一个磺酸基的烷链、或酸盐。例如,所述加速剂可以包含巯基丙烷磺酸或巯基乙烷磺酸。在这些以及其他情况下,所述墨水中的所述溶剂可包含选自由下列项所组成的群组中的至少一种材料:水、松油醇、碳酸亚乙酯、碳酸亚丙酯、二甲基亚砜(dmso)、乙二醇和丙二醇。
7.所述方法还可以包含化学蚀刻所述衬底以移除在(c)中沉积的所述金属的一部分和所述晶种层的一部分,由此在来自所述墨水的所述加速剂存在的位置处形成金属特征,所述金属特征彼此空间隔离。在一些这样的情况下,在(c)中于电解液中电镀所述衬底,所述电解液包含:介于约10-1000ppm之间的电镀抑制剂添加物;介于约10-60g/l之间的铜离子;介于约5-180g/l之间的酸;以及介于约30-80ppm之间的卤素离子。在此类实施方案中,电解液中的加速剂(如果存在)将倾向于在来自墨水的加速剂不存在的区域(如未受打印的区域)中增加电镀速率且将倾向于减少受到打印的区域与未受打印的区域之间的沉积速率对比。因此,在各种实施方案中,电解液可不具有任何加速剂或者仅具有微量的加速剂。
8.在一些实施方案中,所述电镀添加物包含抑制剂。在这样的实施方案中,所述第一沉积速率低于所述第二沉积速率使得所述金属优先沉积在来自所述墨水的所述抑制剂不存在的位置处。
9.在某些实施方案中,所述方法还可以包含化学蚀刻所述衬底以移除在(c)中沉积的所述金属的一部分、在(b)中打印的所述墨水、以及所述晶种层的一部分,由此在来自所述墨水的所述抑制剂不存在的位置处形成金属特征,所述金属特征彼此空间隔离。在使用抑制剂墨水的一些情况下,在(c)中于电解液中电镀所述衬底,所述电解液包含:介于约0-1000ppm之间的加速剂;介于约10-60g/l之间的铜离子;以及介于约5-180g/l之间的酸。在多种实施方案中,所述电解液不具有所述抑制剂、或仅具有微量的所述抑制剂。在某些此类情况中,电解液也可以不具有任何电镀抑制剂添加物、或仅具有微量的电镀抑制剂添加物。
10.在一些实施方案中,所述衬底还包含位于所述晶种层下方的粘附阻挡层。所述方法还可以包含:(d)化学蚀刻所述衬底以移除在(c)中沉积的所述金属的一部分以及所述晶种层的一部分,由此形成金属特征,所述金属特征彼此空间隔离;以及(e)将第二金属电镀至所述衬底上,其中所述第二金属选择性地沉积至在(d)中所形成的所述金属特征上但基本上不形成在所述粘附阻挡层上。在一些这样的情况中,所述第二金属可以形成扩散阻挡层。所述方法还可以包含:(f)将焊接材料电镀至所述扩散阻挡层上,其中所述焊接材料选择性地沉积在(e)中所形成的所述扩散阻挡层上但基本上不形成在所述粘附阻挡层上。在多种实施方案中,所述墨水中的所述电镀添加物与所述衬底上的所述晶种层反应并化学结合至所述晶种层。
11.在所公开的实施方案的另一方面中,提供了一种电流体动力喷射打印装置,其包含控制器,所述控制器被配置成使本文中所主张或说明的电流体动力打印步骤中的一或多者进行。
12.在某些实施方案中,所述电流体动力喷射打印装置可包含:具有尖端的喷嘴,所述尖端具有直径介于约50-5000nm之间的开口;墨水储存器,其与所述喷嘴流体连接;衬底支撑件,其用于在打印期间支撑所述衬底;以及电源,其被配置成在所述喷嘴与所述衬底支撑件之间或在所述喷嘴与所述衬底之间施加电位。
13.在所公开的实施方案的另一方面中,提供一种电镀装置,其包含控制器,所述控制
器被配置成使本文中所主张或说明的电镀步骤中的一或多者进行。
14.在某些实施方案中,所述电镀装置包含:腔室,其用于容纳电解液;衬底保持器,其被配置成在电镀期间保持所述衬底;阳极;以及电源,其被配置成在电镀期间于所述阳极与所述衬底之间施加电位。
15.在所公开的实施方案的另一方面中,提供了一种衬底处理系统,所述系统包含:电流体动力喷射打印装置;电镀装置;以及控制器,其被配置成使本文中所主张或说明的步骤中的任何一或多者加以进行。
16.在所公开的实施方案的又一方面中,提供了一种衬底处理系统,所述系统包含:电流体动力喷射打印装置,其包含:具有开口的喷嘴,其开口具有介于约50-5000nm之间的直径;墨水储存器,其与喷嘴流体连接;衬底支撑件,其用于在打印期间支撑衬底;以及电源,其被配置成在喷嘴与衬底支撑件之间或喷嘴与衬底期间施加电位;电镀装置,其包含:腔室,其用于容纳电解液;衬底支撑件,其被配置成在电镀期间支撑衬底;阳极;以及电源,其被配置成在电镀期间于阳极与衬底之间施加电位;以及控制器,其被配置成使得:利用所述电流体动力喷射打印装置将墨水以图案形式打印至所述衬底上,其中所述墨水包含溶解于溶剂中的电镀添加物,所述电镀添加物包含加速剂或抑制剂;以及在将所述墨水打印至所述衬底上之后,利用所述电镀装置将金属电镀至所述衬底上,其中所述电镀经由优先沉积进行,所述优先沉积在来自所述墨水的所述电镀添加物存在的位置处提供第一沉积速率并且在来自所述墨水的所述电镀添加物不存在的位置处提供第二沉积速率,并且其中所述第一沉积速率不同于所述第二沉积速率。
17.在多种实施方案中,所述系统还可以包含被配置成在所述衬底上沉积晶种层的装置。在某些实施方案中,系统还可以包含被配置成将晶种层沉积至衬底上的物理气相沉积装置。在某些实施方案中,系统还包含被配置成将晶种层沉积至衬底上的无电镀模块。在某些实施方案中,系统还包含无电镀活化模块。在这些或其他实施方案中,控制器可被配置成在墨水被打印至衬底上之前使晶种层沉积至衬底上。
18.在某些实施方案中,系统还包含被配置成从衬底移除金属的化学蚀刻装置。在这些或其他实施方案中,控制器可被配置成使电镀至衬底上的金属的一部分移除及衬底上的晶种层的一部分移除。在某些实施方案中,可将电流体动力喷射打印装置和电镀装置一起设置于在单一工具中。。
19.在所公开的实施方案的又一方面中,提供了一种用于电流体动力喷射打印的墨水,所述墨水包含:溶剂,溶剂包含选自由下列项所构成的群组中的至少一种材料:水、松油醇、碳酸亚乙酯、碳酸亚丙酯、二甲基亚砜(dmso)、乙二醇和丙二醇;以及溶解于溶剂中的电镀添加物,其中电镀添加物包含加速剂或抑制剂,其中电镀添加物以介于约0.1-10g/l之间的浓度存在于溶剂中。
20.在所公开的实施方案的另一方面中,提供了一种用于电流体动力喷射打印的墨水,所述墨水包含:包含加速剂或抑制剂的电镀添加物,其中电镀添加物以约0.1-10g/l之间的浓度存在;以及溶剂,溶剂具有在25℃下时等于或小于约24托的蒸气压以及介于约40-90之间的介电常数,其中墨水具有介于约0.7-20cp之间的粘度且电镀添加物完全溶解于溶剂中。
21.在某些实施方案中,墨水中的氧的浓度为约1ppm或更低。氧可随着时间推移与某
些墨水添加物反应,由此减少墨水的关键电化学活性化合物的必要浓度。在某些实施方案中,墨水包含可以与氧反应且消耗氧的额外物质。可以与氧反应且消耗氧的物质可以足以将墨水中的氧的浓度维持在约1ppm或更低的浓度存在。此可改善墨水的保存期限。在某些实施方案中,可与氧反应且消耗氧的物质为亚硫酸盐化合物。一特定示例为亚硫酸钠。在某些实施方案中,墨水中的电镀添加物包含加速剂。在某些其他实施方案中,墨水中的电镀添加物包含抑制剂。在许多实施方案中,溶剂可包含选自由下列项所构成的群组中的至少一种材料:水、松油醇、碳酸亚乙酯、碳酸亚丙酯、二甲基亚砜(dmso)、乙二醇和丙二醇。在某些实施方案中,溶剂为有机的。在这些或其他实施方案中,溶剂可具有介于约95-275℃之间的自然沸点。在这些或其他实施方案中,溶剂可以包含第一共溶剂和第二共溶剂。在这些或其他情况下,溶剂可包含润湿剂。润湿剂减少墨水与晶种层之间的接触角。润湿剂可避免不连续或滴状的打印。在这些或其他情况下,墨水可包含盐。
22.下面将参考附图更进一步说明这些及其他方面。
附图说明
23.图1a是描述了一种利用基于光致抗蚀剂的技术形成金属特征的方法的流程图。
24.图1b显示了用于进行图1a的方法的处理设备的各种部件。
25.图2a是描述了根据本文中的一实施方案的一种形成金属特征的方法的流程图。
26.图2b示出了用于进行图2a的方法的处理设备。
27.图3a-3d显示了在电流体动力喷射打印处理中经历利用加速剂墨水的图2a方法的部分制造完成的半导体衬底。
28.图4a-4d显示了在电流体动力喷射打印处理中经历利用抑制剂墨水的图2a方法的部分制造完成的半导体衬底。
29.图5示出了根据某些实施方案的在电流体动力喷射打印处理期间的喷嘴与衬底的放大图。
30.图6显示了根据某些实施方案的电镀槽。
31.图7示出了根据某些实施方案的具有多个电镀槽及其他特征的电镀工具。
32.图8显示了根据某些实施方案的具有多个电镀槽及其他特征的电镀工具。
33.图9a-9d示出了根据某些实施方案经历多层膜堆叠形成的部分制造完成的半导体衬底。
具体实施方式
34.在下面的描述中将列举各种特定细节以提供对所述实施方案的全面理解。本发明所公开的实施方案可在缺乏这些特定细节的部分或全部的情况下实施。在其他的情况下,不详细说明众所周知的处理操作以免不必要地使本发明所公开的实施方案难以理解。虽然将结合特定实施方案来说明本发明所公开的实施方案,但应理解,其并不意在限制本发明所公开的实施方案。
35.图1a的流程图说明根据传统方法在衬底上形成精细线互连件、垫、或其他金属特征的一系列步骤。图1b显示了用于进行图1a所述的方法100的半导体处理设备的各种部件。图1a中所示的步骤将在图1b所示的设备的背景下说明。
36.在图1a中,方法100始于操作101,在衬底上沉积导电晶种层。此沉积在图1b中所示的物理气相沉积装置150中进行。接下来,将衬底传送至光致抗蚀剂沉积装置152并在操作103中将光致抗蚀剂层形成至晶种层上。光致抗蚀剂可经由湿式处理方法如旋涂形成,或其可经由干式方法如在衬底上方施加预形成的光致抗蚀剂材料卷来形成。
37.在形成光致抗蚀剂层之后,将衬底传送至光致抗蚀剂图案化装置154,在操作105中经由将光致抗蚀剂层暴露于特定的光条件而图案化光致抗蚀剂层。在操作105中还将衬底传送至光致抗蚀剂显影装置155,其中显影在衬底上已暴露的图案。在一示例中,经由湿式化学处理显影光致抗蚀剂,湿式化学处理涉及将衬底暴露于其中具有溶解盐的溶液如碳酸钾的水溶液。这些图案化操作共同形成光致抗蚀剂层中的凹陷特征。这些凹陷特征定义后续将沉积金属的空间。
38.接下来,将衬底传送至等离子体蚀刻装置156并在操作107处进行除渣处理以从特征的底部移除多余的光致抗蚀剂材料。除渣处理通常涉及暴露于含氧等离子体以用于烧去特征底部处的多余光致抗蚀剂。
39.接着将衬底传送至电镀装置158并在操作109处(例如经由电镀或无电镀)将金属电镀至定义在光致抗蚀剂层中的特征中。接着将衬底传送至光致抗蚀剂剥除装置160并在操作111中从衬底剥除光致抗蚀剂层。可经由干式等离子体蚀刻技术(如将衬底暴露于含氧等离子体)或湿式技术(例如将衬底暴露于光致抗蚀剂溶剂以溶解或膨胀光致抗蚀剂膜,之后可以高流量、超音能力、或其他方法移除光致抗蚀剂)剥除光致抗蚀剂。在移除光致抗蚀剂层之后,将衬底传送至化学蚀刻装置162并在操作113中移除先前受到光致抗蚀剂层保护的区域中的晶种层。
40.在许多情况中,图1b中所示的装置中的每一者都是不同的装置,每一装置用于进行图1a中所述的处理流程中的一特定操作。图1a与1b共同示出,用于形成金属化特征如精细线互连件的传统处理流程是复杂、耗时、且昂贵的。需要许多不同的专用半导体处理装置且每一者必须适当地针对特定应用进行配置。由于每一处理和每件设备必须适当地调整,因此传统处理流程所涉及的大量步骤和装置使得难以对衬底处理技术(包含例如衬底设计及布局)进行任何改变或调整。这使得难以在一种衬底类型或衬底设计的制造与另一种衬底类型或衬底设计的制造之间切换。类似地,由于复杂的处理流程及涉及的大量装置,因而难以运行测试、制造原型衬底等。
41.本文中所述的技术可在不需要图1a和1b中所述的许多处理和装置的情况下形成精细线互连件、垫、及其他类似的金属化特征。因此,制造处理大幅简化、处理装置的数目显著减少、且与处理相关的成本类似地降低(例如因为涉及较少的步骤且因为处理成本的大部分与获取处理装置的资本支出直接相关)。
42.图2a的流程图说明根据本文中的一实施方案的一种精细线互连件或类似的金属化特征的形成方法。图2b示出了用于进行图2a的方法200的处理设备。图2a中所示的步骤将在图2b所示的装置的背景下说明。
43.在图2a中,方法200始于操作201,其中在晶种层沉积装置250中于衬底上形成导电晶种层。在某些情况中,晶种层可以在物理气相沉积装置中经由物理气相沉积来形成。如该领域中所公知的,也可通过其他方法如无电镀形成晶种层。在某些实施方案中,无电镀始于无电活化步骤(其可涉及例如将衬底暴露于锡离子)、接着以含钯离子的电解液将锡(ii)置
换/活化为锡(iv)。这会在衬底表面上留下钯电催化剂且允许许多介电材料的金属化。在某些情况中,无电镀可通过包含还原剂和将电镀作为晶种层的期望金属的金属离子的溶液来进行。适合用于产生铜的晶种层的还原剂的示例包含二甲基胺硼烷(dmab)和次磷酸钾。
44.在多种实施方案中,在操作201中形成晶种层之后且在操作203中进行电流体动力喷射打印之前可任选地预处理衬底。可进行该预处理以移除晶种层上的表面氧化物。预处理可经由湿式方法或干式方法进行。例如,湿式方法可涉及将稀释的酸如h2so4或还原剂如二甲基胺硼烷(dmab)施加至衬底。干式方法可涉及在还原气氛如形成气体中将衬底加热至约100-200℃的温度。在操作201中沉积晶种层之后且在操作203中进行电流体动力喷射打印之前将衬底暴露于大气条件(或其他含氧环境)的实施方案中,这种预处理尤其有利。
45.无论在形成和任选地预处理晶种层中所用的特殊方法为何,将衬底提供至电流体动力喷射打印装置252并在操作203中经由电流体动力喷射列印将墨水选择性地打印至衬底上。如下所述,墨水为电化学活性的墨水。可使用将墨水沉积至衬底上的其他方法,但电流体动力喷射打印尤其适合需要极高分辨率液体转移的应用(尤其是线、空间和结构的关键尺寸大致上小于约50μm,更通常小于10μm或甚至小于2μm的半导体互连和封装应用)。
46.利用电流体动力喷射打印处理选择性沉积电化学活性的墨水还涉及研发具有下列适合特性的墨水:适于储存、传送、输送至衬底表面、以及活化化学成分,如与该处理共同使用的适当的溶剂及活化化学品的溶解度。在本文中的各种实施方案中,墨水包含一或多种溶解于溶剂中的电镀添加物。如下面所讨论的,电镀添加物的示例包含加速剂和抑制剂。下面将更进一步讨论可以存在于墨水中的适当溶剂和其他物质。
47.在衬底表面上的墨水干燥后,墨水中的电镀添加物及任何其他非挥发性材料留在衬底表面上。此时,例如可任选地用去离子水冲洗衬底。虽然不希望受限于任何特定模型或理论,但据信,如果功能上有用的电镀添加物与衬底金属晶种层化学反应且变得强附接及固定于表面处,则根据本文中实施方案使功能上有用的电镀添加物留在其打印处是最有效的。换言之,电镀添加物可以与衬底上的晶种层反应并且化学结合至晶种层。硫醇端基(如r-s-h端基)巯基化合物为能结合至铜晶种层(以及某些其他金属晶种层或其他表面)并且表现出期望的固定特性的一示例性材料种类。此类化合物的特定示例包含巯基丙烷磺酸(例如其可用作加速剂)以及巯基己醇(例如其可用作抑制剂)。强金属结合化合物的另一示例性种类为三唑。苯并三唑为可用作抑制剂的有用三唑的一示例。苯并三唑-5-磺酸和苯并三唑-5-羧酸是可用作加速剂的三唑的示例。在冲洗后,可使衬底经受旋转干燥或其他干燥方法以移除任何不期望的材料。冲洗可移除源于墨水的某些或所有非挥发性材料,这些非挥发性材料排除电镀添加物。在任选的冲洗之后,例如由于上述的固定,因此大部分或所有电镀添加物应保留在衬底表面上。
48.接下来,将衬底传送至电镀装置254且在操作205中经由优先沉积将金属电镀至衬底上以形成特征。沉积处理是优选的,因为相比于墨水/电镀添加物不存在的区域,墨水包含可促进(例如加速剂)或延缓(如抑制剂)电镀的至少一种电镀添加物。
49.例如,在墨水包含电镀加速剂的情况中,相比于墨水不存在的衬底区域,墨水存在的衬底区域将经历优先电镀。相对地,在墨水包含电镀抑制剂的情况中,相比于墨水存在的衬底区域,墨水不存在的衬底区域将经历优先电镀。下面将参考图3a-3d和4a-4d更进一步说明这些示例中的每一个。在任一情况下,在衬底的经打印和未经打印区域处都可发生某
些量(例如非零的量)的沉积。然而,在经打印与未经打印区域中所实现的不同沉积速率可导致图案化特征的成长。特征位于经历较高金属沉积速率的区域中。换言之,除非另有说明,否则本文所用的术语“特征”旨在指代正型/凸起的特征而非负型/凹陷的特征。
50.在经由优先沉积处理来电镀金属之后,将衬底传送至化学蚀刻装置256中并在操作207中化学蚀刻衬底以移除多余的电镀金属和晶种层。可部分移除存在特征的区域中的经电镀的金属。由于在蚀刻之前)这些区域中有相对少的金属(与存在特征的区域相比,因此可显著或完全移除区域中特征之间的经电镀的金属和晶种层。该蚀刻用于使金属特征彼此空间隔离和电气隔离。
51.可以用各种方式组合处理设备的各种部件。在一示例中,系统包含物理气相沉积装置、电流体动力喷射打印装置、电镀装置和化学蚀刻装置,且每一装置是彼此不同且独立的。在另一实施方案中,可在进行多个处理的较大装置的模块中提供图2b中所示的装置中的一或多者。例如,物理气相沉积装置可以是独立的装置,但可以在统一的处理装置中以模块形式设置基于液体的大气处理装置,如电流体动力喷射打印装置、电镀装置以及化学蚀刻装置。在另一示例中,物理气相沉积装置和化学蚀刻装置中的每一者可以是独立的不同装置,但可在较大的统一处理装置内以模块形式设置电流体动力喷射打印装置和电镀装置中的每一者。在另一示例中,化学蚀刻装置是独立的不同装置,但可在较大的统一处理装置内以模块形式设置物理气相沉积装置、电流体动力喷射打印装置和电镀装置中的每一者。在另一示例中,可在较大的统一处理装置内以模块形式设置物理气相沉积装置和电流体动力喷射打印装置中的每一者,但电镀装置及化学蚀刻装置为独立的不同装置或共同成为第二个统一处理装置。在又一实施方案中,可修改物理气相沉积装置及/或电镀装置中的一或多者以包含用于进行电流体动力喷射打印的硬件。在电镀装置受到修改以包含用于进行电流体动力喷射打印的硬件的情况中,应注意确保电流体动力喷射打印处理中所用的墨水无法污染电镀溶液。可提供可移动的挡板或其他限制硬件。图2b中所示的装置的许多配置是可行的,且应认为任何此类组合皆落在本文中的实施方案的范围内。以此方式配置的工具可以是线性的、多层的、轮盘、输送带、集群工具、或其他一般的工具设计,且每一种处理用的模块数目可显著大于1(如10),其中基于工具的生产能力/输出优化并行操作的每一类型处理模块的数目的混合。
52.图3a-3d显示了根据一实施方案的在其上形成特征时部分制造完成的半导体衬底。在图3a-3d的实施方案中,电流体动力喷射打印处理中所用的墨水包含电镀加速剂。因此,该示例中的墨水被称为“加速剂墨水”。下面将参考图2a和2b中所述的操作和装置解释图3a-3d。图3a示出了其上具有晶种层301的衬底300。在一特定示例中,衬底300包含在硅晶片上方的二氧化硅层,但可使用许多不同的衬底和材料。晶种层301包含导电材料如铜、钽、或其组合。在另一示例中,晶种层301包含镍。晶种层可使用各种材料以及材料的组合。在晶种层301包含材料的组合的某些情况中,晶种层的最上层暴露部分与待电镀的金属结构的金属相同(例如用于铜线的铜晶种),然而,不必总是该情况。大致而言,如果使用水性电镀,则晶种层301的暴露表面应该是水性溶液中可电镀的金属(例如可以使用镍晶种层电镀铜线,而不是通常因抑制性氧化表面层w、ta、ti等而无法电镀的金属的暴露表面)。参考图2a和2b,可以在操作201中于晶种层沉积装置250(在某些情况中例如物理气相沉积装置或无电镀沉积装置)内形成晶种层301。在提供晶种层301之后,如图3b中所示,将加速剂墨水302
打印至晶种层301上。该打印可以在操作203中于电流体动力喷射打印装置252内完成。加速剂墨水302是以对应于期望金属特征的图案的图案打印。
53.在晶种层301上打印加速剂墨水302之后,将金属303电镀至晶种层301上和加速剂墨水302上。该电镀在操作205中于电镀装置254内进行。虽然如图3c中所示,金属303形成在经打印和未经打印的两种区域上方,但金属303在印有加速剂墨水302的区域上方成长较快,因此较多。事实上,存在于加速剂墨水302中的加速剂以及电镀溶液中的任选额外电镀添加物(如能减缓未印有加速剂的区域的相对电镀速率的抑制剂以及任选的整平剂)共同用于促进在经打印的区域中的较高电镀速率(相对于未经打印的区域中的电镀速率)。在该示例中,金属303在经打印的区域中的优先电镀速率是未经打印的区域的电镀速率的三倍。在本文中的许多实施方案中,金属303在经打印的区域中的优先电镀速率比未经打印的区域的电镀速率快至少4倍、或快至少10倍、或快至少20倍。相对沉积速率取决于某些因素,例如打印所沉积的添加物的浓度、所施加的电压或总施加的电流、温度以及酸和/或铜浓度的选择以及电镀电解液中任何选定电镀添加物(例如抑制剂和/或整平剂)的化学特性。由于不同的沉积速率,加速剂墨水302所提供的图案经由金属303转移。在电镀之后,将衬底300传送至化学蚀刻装置256并如图3d中所示在操作207中受到化学蚀刻以移除一部分的金属303和一部分的晶种层301。尤其是,蚀刻衬底300至特定程度以完全移除未经打印的区域(例如加速剂墨水302不存在的区域)中的金属303和晶种层301,但使金属303和晶种层301仍保留在经打印的区域(例如加速剂墨水302存在的区域)。图3d中的参考标号303d代表在操作207中的化学蚀刻之后仍保留在衬底300上的金属特征。在该蚀刻操作之后,金属特征303d彼此空间隔离和电气隔离。
54.图4a-4d显示了根据另一实施方案的其上形成特征时部分制造完成的半导体衬底。在图4a-4d的实施方案中,电流体动力喷射打印处理中所用的墨水包含电镀抑制剂。因此,该示例中的墨水被称为“抑制剂墨水”。下面将参考图2a和2b中所述的操作及装置解释图4a-4d。图4a示出了其上具有晶种层401的衬底400。晶种层401类似于图3a的晶种层301。可以在操作201中于晶种层沉积装置250内形成晶种层401。在提供晶种层401之后,如图4b中所示,将抑制剂墨水402打印至晶种层401上。该打印可以在操作203中于电流体动力喷射打印装置252内完成。抑制剂墨水402以对应于期望金属特征的相反图案的图案打印。换言之,将抑制剂墨水402提供至不期望形成金属特征的区域中。
55.在晶种层401上打印抑制剂墨水402之后,将金属403电镀至晶种层401上和抑制剂墨水402上。该电镀在操作205中于电镀装置254内进行。虽然如图4c中所示,金属403形成在经打印和未经打印的两种区域上方,但金属403在不存在抑制剂墨水402的区域上方成长较快因此较多。事实上,存在于抑制剂墨水402中的抑制剂以及电镀溶液中的额外电镀添加物(如加速剂及任选的抑制剂及/或整平剂)共同用于促进在未经打印的区域中的较高电镀速率(相对于经打印的区域中的电镀速率)。在该示例中,金属403在未经打印的区域中的优先电镀速率为经打印的区域的电镀速率的三倍。在本文中的许多实施方案中,金属403在未经打印的区域中的优先电镀速率比经打印的区域的电镀速率快至少4倍、或快至少10倍、或快至少20倍。如参考图3a-3d所述,相对沉积速率取决于某些因素,如打印所沉积的添加物的浓度、所施加的电压或总施加的电流、温度以及酸和/或铜浓度的选择以及电镀电解液中任何选定电镀添加物(例如加速剂、抑制剂和/或整平剂)的化学特性。由于不同的沉积速率,
抑制剂墨水402所提供的图案的相反图案经由金属403转移。在电镀之后,将衬底400传送至化学蚀刻装置256并且如图4d中所示在操作207中受到化学蚀刻以移除一部分的金属403、抑制剂墨水402以及一部分的晶种层401。尤其是,蚀刻衬底400至特定程度以完全移除经打印的区域(如抑制剂墨水402存在的区域)中的金属403、抑制剂墨水402和晶种层401,但使金属403、抑制剂墨水402和晶种层401仍保留在未经打印的区域(例如抑制剂墨水402不存在的区域)。图4d中的参考标号403d代表在操作207中的化学蚀刻之后仍保留在衬底400上的金属特征。在该蚀刻操作之后,金属特征403d是彼此空间隔离和电气隔离的。
56.图9a-9d示出了可用于某些实施方案中的示例性处理流程。图9a-9d的处理流程可以与图3a-d及4a-d中所示的那些处理流程结合。换言之,在利用电化学活性的墨水(例如加速剂墨水或抑制剂墨水)优先电镀特征之后可使用该处理流程。图9a-9d中所示的实施方案能形成包含不同类型的金属的堆叠件。这类实施方案在所形成的特征包含不同金属层的情况下尤其有用。一示例背景为形成互连柱,其可包含例如其上具有扩散阻挡层和焊接层的金属特征。在一特定示例中,金属特征为铜、扩散阻挡为镍、且焊接材料为锡或锡银。另一示例背景为形成相对宽但薄的导电连接垫。在各种实施方案中,形成的堆叠件可以包含铜、镍、锡、铟、银、金等的任何组合。
57.衬底900如图9a中所示开始。衬底900包含位于粘附阻挡层911上方的晶种层901。晶种层901类似于本文中所述的其他晶种层。粘附阻挡层911可以包含材料,例如钨、钛、钽、钛钨、钽钨等。将金属903电镀至晶种层上以形成凸起特征。该电镀可利用本文中所述的技术完成,例如使用电流体动力喷射打印装置252在衬底表面上提供电化学活性的墨水、然后在电镀装置254进行优先电镀以形成凸起特征。虽然图9a-9d未显示墨水,但如参考图3c及4c所解释及所示的,应理解此类已干燥的墨水可存在于晶种层901与金属903之间。此外,虽然图9a未显示相邻特征之间的任何金属903,但应理解,如图3c和4c中所示,这类金属可以存在。
58.在将金属903电镀至晶种层901上之后,将衬底900传送至蚀刻室如图2b的化学蚀刻装置256。在此处,如图9b中所示蚀刻晶种层901和金属903以移除晶种层901受到暴露的区域中的晶种层901。该蚀刻类似于图2a的化学蚀刻操作207。蚀刻处理是选择性的,其目标在于移除被暴露的晶种层901但使粘附阻挡层911基本上完整。
59.接下来,衬底回到电镀装置254且如图9c中所示将扩散阻挡层912选择性地电镀至金属903上但基本上不沉积至粘附阻挡层911上。应理解,某些量的扩散阻挡层912可能会形成在粘附阻挡层911上例如晶种层901/金属903接触粘附阻挡层911的角落处。对于该应用的目的而言,此类沉积不应被认为是实质性的。此外,应理解,由于此类沉积仅因为晶种层901/金属903的存在而发生,因此扩散阻挡层912不会形成在已从晶种层901/金属903所形成的特征移除的位置处的粘附阻挡层911上。
60.扩散阻挡层用的一示例性材料为镍,但根据期望可使用其他材料。虽然不希望受限于任何理论或作用机制,但据信,扩散阻挡层912不会形成在粘附阻挡层911上,因为在晶种层901被移除且粘附阻挡层911暴露于氧/水气之后粘附阻挡层911已经氧化。该暴露于氧/水气可在衬底于蚀刻室与电镀室之间传送时发生。粘附阻挡层911的氧化材料对于电镀金属的直接成核及成长而言具有高度抑制性,从而意指金属(如扩散阻挡层912)不会电镀至氧化材料上。此外,虽然粘附阻挡层911的上暴露表面已经氧化,但粘附阻挡层911仍能在
金属903的相邻特征之间提供某些程度的电连接,因此能够在金属903上进一步电镀。因此,当电镀扩散阻挡层912时,其选择性地沉积在金属903上但不沉积于粘附阻挡层911上。扩散阻挡层912沉积在金属903的所有暴露侧上(以及仍存在于金属903下方的晶种层901的暴露部分上)。
61.接下来,如图9d中所示,选择性地将焊料层913沉积至扩散阻挡层912上但基本上不沉积至粘附阻挡层911上。出于上文关于上述扩散阻挡层912的沉积所述的相同原因,该沉积也是选择性的。图9d中所示的特征例如可为覆盖有焊接材料的柱或连接垫。出于说明形成包含多层不同材料的特征的目的,提供关于图9a-9d所述的特定结构和材料。实施方案不应受限于该段落中所述的特定结构或材料。根据特定应用的需要,可形成各种结构和材料,包含本文中所述的金属的组合。
62.可使用电流体动力喷射打印来产生先前用另选的打印方法如喷墨打印无法实现的极精细、小尺寸图案。例如,喷墨打印可产生特征,例如直径小至约50-100μm的点。对比之下,可使用电流体动力喷射打印形成尺寸<0.5μm的点、线、或其他特征。如果期望较大的特征,可使用电流体动力喷射打印以极精准的方式如<0.5μm的分辨率形成特征。换言之,电流体动力喷射打印不仅仅在形成极小尺寸特征时有用,其在以高精准度形成较大特征时也是有用的。下面将参考图5解释电流体动力喷射打印的原理。
63.图5示出了电流体动力喷射打印处理期间的衬底500。用墨水502填充喷嘴501。此外,喷嘴501与墨水储存器(未显示)流体连接,墨水储存器根据需要将墨水502提供至喷嘴501中。喷嘴尖端503位于喷嘴501的底部处。使喷嘴尖端503处于衬底500附近。在喷嘴501与衬底500之间施加大电位504时,墨水502内的溶剂分子与衬底500表面的偶极矩重新定位,导致形成与衬底表面的空间电荷相反符号的液相表面空间电荷。这会将墨水502朝向衬底500的表面牵引,在喷嘴尖端503处形成泰勒锥(taylor cone),最终墨水502从喷嘴尖端503喷射成为墨水液滴505。墨水液滴505包含剩余电荷并在电位504所产生的电场中朝向衬底500的表面加速。在撞击衬底500的表面时,墨水液滴505中的电荷被中和。由于该基于液滴的流体流,电流间歇性地在喷嘴501与衬底500之间所产生的“电路”中流动。在撞击衬底500之后,墨水液滴505中的溶剂干燥,留下墨水502中的任何非挥发性物质。在本文中的各种实施方案中,此类非挥发性物质可以是电镀添加物,例如加速剂或抑制剂。
64.虽然图5显示为单一喷嘴,但应理解,电流体动力喷射打印处理可使用大量成列、成行、成阵列、或其他方式配置的可独立控制的喷嘴。可独立地偏置每一此类喷嘴使其根据期望喷射或不喷射粒子。此外,喷嘴和衬底可彼此相对移动以使每一喷嘴可根据期望在各种位置处和衬底相互作用。在某些情况中,喷嘴是可移动的。在另一情况中,衬底(如衬底支撑件)是可移动的。在又一情况中,喷嘴与衬底两者都是可移动的。虽然图5将喷嘴501显示为相对长的向下突出的窄杆,但也可使用其他喷嘴设计。在另一实施方案中,用于输送墨水的喷嘴可以是较简单的设计,例如包含与墨水储存器流体交流的孔口。在此类实施方案中,孔口类似于喷嘴尖端503处的开口。除非另有说明,否则本文中所使用的术语孔口和开口可交换使用。
65.在某些实施方案中,喷嘴尖端503处的开口的宽度可以介于约50至5000nm之间。在许多情况中,液滴的尺寸约为喷嘴尖端开口的三分之一。例如,可使用直径约300nm的喷嘴尖端开口形成直径约100nm的液滴。一般而言,喷嘴尖端开口的宽度应相对小以打印出小尺
寸的特征。例如,在许多情况中可使用宽度落在上述范围内的喷嘴产生直径落在约20-1500nm之间的范围的墨水液滴。可使用该范围内的液滴尺寸形成极高分辨率如近似<0.5μm的范围的图案(最终成为经电镀的金属特征)。在某些实施方案中,喷嘴尖端503与衬底500的表面之间的距离506可介于约0.05至5mm之间。
66.装置还可以包含图5中未显示的支持整体打印处理的多个特征,例如喷嘴和/或用于调节喷嘴/打印头相对于衬底的3d位置的衬底定位装置。例如,装置可以包含用于光学位置和归位的硬件。此类硬件可被配置成检测晶片上的基准,由此在喷嘴/打印头与衬底之间进行精确对准,以使打印发生在衬底上相对于衬底上的下方结构、衬底上的缺口和/或其他基准、和/或衬底边缘的期望位置处。装置可包含用于控制打印墨水从大量储存容器至喷嘴头的输送的硬件(如泵、管线、过滤器等)。装置可包含支持多个喷嘴在多喷嘴头内同时独立定位的特征。可提供多个独立的压电定位设备,其每一者都能使多喷嘴头组件的一或多个喷嘴相对于彼此移动,由此实现可变的线与线之间的平行打印操作空间。装置可包含用于控制喷嘴头移除或添加的组件以及用于控制墨水、衬底、或两者的温度的元件。
67.可以设计装置以使打印头和工件上方的区域是基本密封的(如形成环境腔室),以相对于温度和/或存在的气体,控制喷嘴头附近的空间和/或打印头与晶片之间的间隙中的大气环境。例如,可使用环境腔室移除不期望的气体(如氧或湿气)。在这些或其他示例中,可将一或多种气体(如反应性气体或惰性气体)添加至腔室,例如与墨水或衬底反应、或产生惰性气氛(如氮气、氩气)。在这些或其他示例中,装置可包含用于调节气氛的硬件以便容纳经控制的量的蒸发墨水溶剂和/或在真空条件(例如其可有助于溶剂的蒸发)下进行打印。在这些或其他示例中,装置可具有一或多个前开口标准舱(foup),其为设计用来在受控环境中稳固安全地支撑衬底的密闭空间。如下面参考图7所讨论的,例如,可通过设置有适当装载端口和机器搬运系统的工具从foup移除衬底。在衬底分别在装置中受到处理之前和/或之后,可使用foup储存进入和/或离开的衬底。
68.在某些实施方案中,装置可以包含彼此并行操作的两或更多个模块。每一模块可如本文中所述的方式配置,例如在衬底表面上提供电流体动力喷射打印。另选地或除此之外,如下面参考图7和8进一步说明的,可配置一或多个模块以进行其他功能。这类其他功能可包含但不限于,在打印前预处理衬底、在打印之后和电镀之前冲洗衬底、在冲洗之后干燥衬底、以及电镀衬底。在某些示例中,用于在打印之前预处理衬底的模块可操作以从晶片移除表面氧化物。该移除可以在湿式预处理站中利用湿式方法完成、或在干式预处理站中利用干式方法完成。湿式方法可涉及将稀释的酸如h2so4或还原剂如二甲基胺硼烷(dmab)施加至衬底表面。干式方法可涉及在还原环境如形成气体(forming gas)中加热衬底(如加热至介于约100-200℃的温度)。在各种实施方案中,如下面参考图7和8进一步讨论的,装置可包含用于在各种模块之间支撑和输送晶片的系统(如机械手搬运系统)。
69.其他共同的装置特征可包含流体条件输送控制装置(如加热器/冷却装置以及热交换器、水平控制器等)、以及例如用于调节喷嘴位置(如使用电流反馈,其中喷嘴高度与电流体动力电流相关)和流体输送(如使用衬底上的液体薄膜的光学分析)的反馈控制测量装置。还可以考虑多通道功率和/或功率切换装置以开关控制电流体动力喷射打印头的阵列,使其在较大的“打印头”内独立操作。
70.在电流体动力喷射打印期间可控制的一个因素为施加至一或多个喷嘴501中的每
一者与衬底500之间的电位(或相关的电流)的大小。当电场超过特定限制值时,来自泰勒锥的顶点处的表面电荷排斥的应力会超过表面张力,因此墨水液滴505朝向衬底500喷射。电场电位504应低于会造成墨水原子化或在多方向上缺乏控制地喷洒的电位。在某些实施方案中,施加至喷嘴501与衬底500之间的电位504的大小可介于约0.5-10kv之间、或介于约1.5-4kv之间。电位的大小可取决于多个特征,如墨水502中的溶剂的种类和特性、墨水502中的电镀添加物的种类和特性、墨水502中的任何额外物质(如果存在任何物质)的种类和特性、喷嘴尖端503与衬底500之间的距离506、以及打印图案中的特征的期望尺寸和分辨率。
71.在多种实施方案中,墨水和/或墨水液滴可以具有特定的特性。在本文中的实施方案中,墨水包含溶解于溶剂中的至少一种电镀添加物。为了确保墨水液滴到达衬底表面,墨水液滴可具有特定尺寸且墨水中的溶剂可以具有特定的挥发性。在多种实施方案中,液滴尺寸可至少为约20nm、至少为约50nm、或至少为约100nm。在这些或其他情况中,液滴尺寸可以为约1500nm或更小、约1000nm或更小、约400nm或更小、约200nm或更小、约100nm或更小、或约50nm或更小。在某些特定的示例中,液滴尺寸可介于约20-1000nm之间、或可介于约100-400nm之间。在这些或其他实施方案中,墨水中存在的溶剂所具有的正常沸点可介于约90-275℃之间、或介于约100-225℃之间。在某些情况中,溶剂所具有的正常沸点可至少为约95℃、至少为约100℃、至少为约125℃、至少为约150℃、或至少为约175℃。在这些或其他实施方案中,溶剂所具有的正常沸点可为约275℃或更低、例如为约225℃或更低、或为约150℃或更低。在这些或其他实施方案中,墨水中存在的溶剂在25℃下可具有介于约0.05-30torr之间(如介于约6-4000pa之间)、或介于约0.1-25torr之间(如介于约13-3300pa之间)的蒸气压。在许多情况中,溶剂在25℃下所具有的蒸气压可约等于或小于水的蒸气压。在25℃下,水具有约23.8torr(如约3175pa)的蒸气压。因此,在各种实施方案中,溶剂在25℃下所具有的蒸气压可等于或小于约24torr(如小于或等于约3200pa)。虽然考虑在25℃下的蒸气压,但应理解,在使用期间溶剂可处于不同温度下。挥发性较高的溶剂可在到达衬底表面之前便干燥,在该点处自由电荷在空气中分解溶剂。如果该情况为真,则无法有效地将图案打印至衬底表面。相对地,挥发性较低的溶剂一旦存在于衬底上后可能无法充分快速地干燥。如果该情况为真,则墨水可能会呈涂抹状而湿得超出期望图案的目标尺寸。在许多情况中,期望液滴到达衬底表面后的100ms内完全干燥。
72.和墨水相关的另一考虑因素是溶剂应充分地溶解电镀添加物。在许多情况中,电镀添加物为极性有机电镀添加物。在此类情况中,溶剂可能也是极性的,有助于溶解极性有机电镀添加物。可使用的极性有机电镀添加物的一示例为加速剂巯基丙烷磺酸。在某些情况中,溶剂可具有特定的介电常数,其可反应在其溶解电镀添加物的能力上。在某些情况中,溶剂可具有大致上类似于水的介电常数,该介电常数介于约40与90之间。大体而言,溶剂和电镀添加物应具有相当的极性。
73.可符合上述标准的示例性溶剂包含水、松油醇、碳酸亚乙酯、碳酸亚丙酯、二甲基亚砜(dmso)、乙二醇、聚丙二醇、及其组合。这些示例性溶剂可以与其他溶剂组合,前提条件是溶剂内的电镀添加物的挥发性和溶解度能维持在上述指导方针内。在许多情况中,溶剂为有机和非水性的,但在某些情况中可使用水。可用于改性基础溶剂的粘度、介电常数及其他特性以产生具有目标效能的墨水的示例性共溶剂包含碳酸二甲酯、碳酸二乙酯、dmso和
水。可共同使用的其他示例性共溶剂包含但不限于碳酸二乙酯/碳酸亚丙酯、碳酸二甲酯/碳酸亚丙酯、碳酸二乙酯/碳酸亚乙酯、及碳酸二甲酯/碳酸亚乙酯。
74.关于墨水的其他考虑因素是其粘度。太粘的墨水可能难以处理和/或输送至打印头、或难以以合适的方式从喷嘴尖端吸引,但不够粘的墨水可能在衬底表面上干燥之前便快速/轻易呈现涂抹状。在某些实施方案中,墨水可具有介于约0.7-20cp之间、更通常具有介于约0.8-3cp之间的环境温度粘度(如在20℃下)。
75.可在墨水内以特定浓度提供电镀添加物。在某些实施方案中,电镀添加物的提供浓度可介于约0.01-10g/l(10-10,000ppm)之间、或介于约0.1-10g/l之间、在某些情况中介于约0.1-1g/l(约100-1000ppm)之间。在某些此类实施方案中,电镀添加物的提供浓度可至少为约0.1g/l(100ppm)、或至少为约0.15g/l(150ppm)、或至少为约0.2g/l(200ppm)。特定应用的电镀添加物的理想浓度可取决于一些因素,例如电镀添加物的种类和特性、溶剂的种类和特性、后续用于电镀金属特征的电镀溶液的组成等。在各种实施方案中,目标为使墨水能供给足够的电镀添加物完全覆盖其润湿的表面(如期望打印墨水位置处的晶种层)及与其润湿的表面反应而形成吸附材料的至少一单层。应理解,单层通常被限制在已打印有墨水的区域。
76.除了电镀添加物和溶剂之外,墨水可包含一或多种额外物质。例如,在某些情况中墨水可包含润湿剂(如表面活性剂)。当润湿剂存在时,润湿剂可改变溶剂的表面张力,由此影响墨水液滴的尺寸及所产生的打印图案和电镀金属特征的尺寸与形状。润湿剂可减少墨水与其上打印墨水的金属表面(如晶种层)之间的接触角,由此改善墨水的润湿能力。润湿剂可以是非电化学活性的化合物。在许多情况中,润湿剂不会结合至金属表面(如晶种层),因此在冲洗和/或与电镀溶液接触时会被溶解掉。可用于作为润湿剂的示例性表面活性剂包含例如月桂酸硫酸钠、聚丙二醇或聚乙二醇、或氧化物。在这些或其他情况中,墨水可包含盐类。当盐类存在时,盐类可改变墨水的蒸气压、粘度、及其他特性,由此影响墨水液滴的尺寸及所产生的打印图案和电镀金属特征。示例性的盐类可例如包含四甲基或四乙基碳酸盐、柠檬酸盐、氢氧化物,以及硫酸铜。在墨水包含加速剂的情况中,墨水可不具有任何抑制剂(suppressor)和/或抑制剂(inhibitors)。类似地,在墨水包含抑制剂的情况中,墨水可不具有任何加速剂。在某些情况中,例如润湿剂与加速剂墨水结合使用的情况中,墨水和润湿剂刚好具有电镀抑制剂的作用,因此墨水可包含加速剂和抑制剂(如润湿剂)两者。下面将更进一步讨论电镀添加物,例如加速剂、抑制剂及其在电镀处理期间的相互作用。
77.当墨水被输送至电流体动力喷射打印装置的喷嘴时,墨水可具有特定最大的氧浓度。在某些情况中,可提供除气装置以确保墨水中的氧浓度低于最大目标浓度。除气装置可流体连接至墨水储存器、或流体连接在墨水储存器与喷嘴之间。在某些实施方案中,被输送至喷嘴的墨水中的最大氧浓度为约1ppm。也可通过包含与墨水自身中的氧反应且消耗墨水自身中的氧的物质,例如有机或无机亚硫酸盐,控制墨水中的氧水平。一特定示例为亚硫酸钠。可以在墨水中提供与氧反应且消耗氧的物质,其浓度应足以将墨水中的氧浓度维持在约1ppm或更低。
78.可影响电流体动力喷射打印处理的结果的另一因素是打印进行的温度。例如,墨水的温度可影响墨水的粘度,粘度可影响液滴尺寸及所产生的打印图案/电镀特征。类似地,衬底的温度可影响墨水多快干燥。在各种情况中,可在打印期间控制墨水的温度、喷嘴
的温度、和/或衬底的温度(或衬底定位于其上的支撑件的温度)。例如,在打印期间可将墨水和喷嘴维持在介于约100-200℃之间的温度下。在这些或其他情况中,在打印期间可控制衬底或衬底支撑件的温度。例如,取决于特定的溶剂及墨水特性,可将衬底或衬底支撑件维持在经冷却或经加热的温度下。例如,在打印期间可将衬底或衬底支撑件维持在介于约100-200℃的温度下。
79.在某些情况中,墨水可以是化学稳定的使得其被长期储存。在其他情况中,墨水可以是较不化学稳定的。在某些此类实施方案中,可在使用前的短时间内(如使用前的约一个星期或更短的时间内、例如使用前约3天或更短时间内、或使用前的约24小时或更短时间内)通过在相关溶剂内以期望浓度混合相关成分而制备墨水。
80.衬底还可以具有特定特性。例如,在许多情况中衬底是硅半导体晶片。衬底上通常具有氧化硅层。此外,衬底通常包含导电晶种层,如图3a和4a中所示,当衬底被提供至电流体动力喷射打印装置时导电晶种层被暴露。导电晶种层通常是金属且通常包含铜、钽、镍、或其混合物。在某些情况中也可使用其他金属。晶种层可具有介于约之间的厚度。在电流体动力喷射打印处理中打印之后,干燥的墨水可具有介于约0.01-0.25μm之间的厚度。在电镀之后及蚀刻之前,优先电镀的特征可具有介于约0.25-25μm之间的厚度(如测量为高度)。优先电镀特征之间的电镀金属(如以相对较慢的速率成长的金属)的厚度(如测量为高度)可介于约0.05-2μm之间。如参考图3d及4d所解释的,在电镀之后可使用化学蚀刻来蚀刻去除(i)优先电镀特征之间的不期望的金属;(ii)优先电镀特征之间的不期望的晶种层;(iii)不期望的墨水(如果存在任何墨水的话);以及(iv)优先电镀特征上的金属的上部。在蚀刻之后,优先电镀的金属特征是彼此空间隔离和电气隔离的。经隔离的特征可具有介于约0.20-20μm之间的高度。
81.如上所述,墨水通常包含电镀添加物以用于促进经打印的区域与未经打印的区域之间的不同的电镀速率。在许多情况中,添加物为加速剂或抑制剂。在墨水包含加速剂的情况中,电镀溶液通常包含抑制剂(以及任选的整平剂)。在墨水包含抑制剂的情况中,电镀溶液通常包含加速剂(以及任选的整平剂)。然而在某些情况中,电镀溶液可以不具有(或基本上不具有)加速剂、抑制剂、和/或整平剂。在此类情况中,电解液可包含溶剂(如水)、待电镀的金属离子(如电镀铜特征用的铜离子)以及酸。
82.虽然不希望受限于任何理论或作用机制,但据信,电镀抑制剂如聚乙二醇、聚环氧乙烷、聚丙二醇以及聚环氧丙烷(单独或与其他电镀浴添加剂的组合)是表面动力限制(或极化)化合物,其可造成衬底-电解液界面各处的压降大幅增加,尤其是当与表面化学吸附卤化物(如氯化物或溴化物)组合存在时尤其如此。卤化物可充当抑制剂分子与晶片表面之间的化学吸附桥。抑制剂具有下面两种作用:(1)相对于不存在抑制剂的区域,在存在抑制剂的区域增加衬底表面的局部极化;及(2)总体上增加衬底表面的极化。增加的极化(局部和/或总体)对应于增加的电阻率/阻抗,因此使特定施加电位下的电镀较慢。
83.据信,传统的电镀抑制剂虽然不会强吸附或化学吸附至衬底表面上且电镀抑制剂不会被大量地掺入沉积膜中,但电镀抑制剂可能会随时间推移由于电镀浴中的电解或化学分解而缓慢降解。由于传统的电镀抑制剂不会强吸附至衬底表面上,因此这些分子被提供于墨水中时通常不会造成本文中所述的不同的电镀速率。相反,墨水中所提供的传统电镀抑制剂可能会在冲洗或与电镀溶液接触时被洗掉。传统电镀抑制剂通常是相对大的分子,
且在许多情况中具有聚合物的本质(如聚环氧乙烷、聚环氧丙烷、聚乙二醇、聚丙二醇、各种共聚合物及其组合物等)。抑制剂的其他示例包含:具有含s-官能团和/或含n-官能基团的聚环氧乙烷与聚环氧丙烷、聚环氧乙烷与聚环氧丙烷的嵌段聚合物等。抑制剂可具有直链结构或支链结构。在市售的抑制剂溶液中常常同时存在着具有各种分子量的抑制剂分子。不同于本文中所述的抑制剂(如可在抑制剂墨水中用作极化剂的抑制剂),抑制剂分子通常不会强结合至表面且可通过冲洗从表面移除、或在与电镀溶液接触时可以从表面扩散离开而进入电镀溶液中。因此本文中所用的抑制剂分子是极化剂,其可相对松散地结合至表面且无法被用于抑制剂墨水中作为主要抑制剂。意即,出于不是导致不同电镀速率的目的,将抑制剂添加至电流体动力喷射打印墨水中。例如,某些抑制剂还具有润湿剂/界面活性剂的作用。出于改善墨水在相关晶种层上的润湿能力的目的,可将此类抑制剂提供至电流体动力喷射打印墨水(如加速剂墨水或抑制剂墨水)中。抑制剂也可以存在于电镀溶液中,在打印之后衬底是在电镀溶液中被电镀。此类抑制剂在墨水为加速剂墨水的情况中尤其有利。
84.虽然不希望受限于任何理论或作用机制,但据信,加速剂(单独或与其他电镀浴添加剂的组合)倾向于局部地降低和抑制剂存在相关的极化效应,由此局部地增加电沉积速率。在吸附的加速剂最集中的区域中极化效应的降低最显著(即根据吸附加速剂的局部表面浓度而降低极化)。示例性的加速剂包含但不限于二巯基丙磺酸、二巯基乙磺酸、巯基丙磺酸、巯基乙磺酸、二-(3-磺丙基)二硫(sps)、及其衍生物。在本文中的各种实施方案中,加速剂包含具有至少一个巯基团和一个磺酸基的烷链或盐。虽然加速剂可变得强吸附至衬底表面且通常因为打印处理和/或电镀反应而变得横向表面固定,但加速剂通常不显著掺入膜中。因此,当沉积金属一段足以沉积大量金属膜的时间时,加速剂会留在表面上。
85.对于本公开的目的而言,抑制剂(例如可存在于墨水中)为电化学活性化合物,其(i)与衬底表面(如晶种层)反应或变得强吸附至衬底表面(如晶种层),以在表面受到冲洗或与电镀溶液接触时仍留在表面上;以及(ii)增加表面的极性(或等同地增加在电镀期间的电荷转移电阻、或增加驱动相同量的电流流经表面所需的电压)。
86.在某些实施方案中,整平剂可以存在于墨水和/或电镀溶液中。虽然不希望受限于任何理论或作用机制,但据信,整平剂(单独或与其他电镀浴添加剂的组合)充当极化剂。在某些情况中,整平剂可置换加速剂、移除加速剂、或驱动加速剂掺入成长金属膜中,由此抵消与加速剂相关的去极化效应。
87.整平剂可局部增加衬底的极化/表面阻抗,由此在整平剂存在的区域中减缓局部电沉积反应。整平剂的主要特征在于,整平剂的局部表面浓度在某个程度上是由质量传输所决定且整平剂通常会因与表面接触和/或电还原而被持续消耗至成长电镀膜中或被转变为非抑制性的副产物。由于该消耗/转变,因此整平剂被持续供给至表面以维持整平剂在表面处的期望浓度。因此,整平剂主要作用在具有几何特征的表面结构上,所述几何特征远离表面突起且更多暴露于溶液环境。该作用“平滑”电沉积层的表面。据信,在许多情况中整平剂在衬底表面处以等于或接近于扩散限制速率的速率反应或被消耗,因此连续地供给整平剂通常有利于维持各个时间处的均匀电镀条件。在某些实施方案中,墨水及电镀溶液两者都可以不具有整平剂(或类似地,整平剂可存在但仅有微量)。
88.整平剂化合物大致上基于其电化学功能与影响而分类为整平剂,且不需要特定的化学结构或配方。然而,整平剂通常包含一或多个氮、胺、酰亚胺或咪唑官能团,且还可以包
含硫官能团。某些整平剂包含一或更多的五元与六元环和/或共轭有机化合物衍生物。氮基团可形成环结构的一部分。在含胺的整平剂中,胺类可为伯、仲、叔或季烷基或芳基胺。此外,胺可为芳基胺或杂环胺。胺的示例包含但不限于二烷基胺、三烷基胺、芳烷基胺、三唑类、咪唑、三唑、四唑、苯并咪唑、苯并三唑、哌啶、吗啉、哌嗪、吡啶、噁唑、苯并噁唑、嘧啶、喹啉、及异喹啉。尤其可使用咪唑与吡啶。整平剂的另一示例为健那绿b。整平剂化合物也可包含乙醇盐基团。例如,整平剂可包含通用主链(类似于如在聚乙二醇或聚环氧乙烷中所见的主链)及插入至链上的胺官能基片段(如健那绿b)。环氧化物的示例包含但不限于表卤代醇,例如表氯醇和表溴醇,以及聚环氧化物化合物。尤其可使用具有两或更多种环氧化物部分的聚环氧化物化合物,该两或更多个环氧化物部分是通过含醚键结合在一起。某些整平剂化合物为聚合性的,但某些为非聚合性的。聚合性整平剂化合物的示例包含但不限于聚乙烯亚胺、聚酰胺胺、以及胺与各种氧环氧化物或亚硫化物的反应产物。非聚合性整平剂和电镀抑制化合物的示例为6-巯基-己醇。类似地,许多其他的有机硫醇及不是含硫醇-磺酸基化合物的化合物在吸附至表面时可作为整平剂/电镀抑制剂。合适的整平剂的另一示例为聚乙烯吡咯烷酮(pvp)。
89.大体而言,加速剂增加电镀速率而抑制剂和整平剂减少电镀速率。由于整平剂还具有减少电镀速率的功能,因此可将这些整平剂视为是用于本技术的目的的抑制剂,前提条件是某些整平剂满足抑制剂标准。如上所述,抑制剂为会变得结合至衬底表面(如晶种层)且具有优先迟缓抑制剂存在处(相对于抑制剂不存在处)的电镀反应的作用的物质。当使用抑制剂墨水时,由抑制剂墨水中的抑制剂产生的局部电镀抑制作用应持续足够久的时间以在电镀期间产生电镀对比(例如不存在抑制剂的区域具有较多电镀而在存在抑制剂的区域具有较少电镀)。
90.电镀处理中所用的电解液可具有特定特性。在一示例中,电流体动力喷射打印处理中所用的墨水包含电镀加速剂(例如加速剂墨水)。因此,电镀处理中所用的电解液可不具有加速剂(或仅具有微量的加速剂)。这确保加速剂仅吸附在衬底表面上的期望位置处,例如打印有加速剂墨水且期望金属特征的位置。在这些情况中,电解液包含一或多种其他电镀添加物,例如抑制剂以及任选的整平剂。示例性的抑制剂浓度可介于10至1000ppm之间且示例性的整平剂浓度(当整平剂存在时)可介于约0.1至2ppm之间。此外,电解液通常包含浓度介于约10-60g/l之间的铜离子(如来自于硫酸铜或其他来源),其,浓度为约5-180g/l的酸(如硫酸),以及浓度为约30-80ppm的卤素离子(如氯、溴、氟等)。卤素离子可具有促进抑制剂分子吸附至衬底表面的作用。在该示例中,在电镀期间施加电流至衬底,使铜沉积在经打印和未经打印的区域上,但优先沉积(如沉积较多)在打印有加速剂墨水的区域上。
91.在另一示例中,电流体动力喷射打印处理中所用的墨水包含电镀抑制剂(如抑制剂墨水)。因此,电镀处理中所用的电解液可以不具有抑制剂(或可仅具有微量的抑制剂)。这确保抑制剂仅吸附在衬底表面上的期望位置处,例如打印有抑制剂墨水且不期望金属特征的位置。在某些实施方案中,用于电镀特征的电镀溶液可仅包含酸(如介于约5-180g/l之间的硫酸)以及铜离子(例如介于约10-60g/l之间)。然而,取决于抑制剂墨水中的抑制剂与电镀浴中所用的加速剂之间的相对表面吸附强度,一或多种额外成分如加速剂、氯离子以及抑制剂可存在于电镀浴中以促进电镀速率对比。尤其是,如果抑制剂较强地吸附且在表面处不会被加速剂所置换,则加速剂可存在于电镀溶液中且将吸附至无抑制剂的表面区
域。在这些情况中,电解液可包含一或多种其他电镀添加物,例如加速剂以及任选的整平剂。示例性的加速剂浓度可介于约10-1000ppm之间,示例性的整平剂浓度(当整平剂存在时)可介于约0.1-2ppm之间。此外,电解液通常包含浓度介于约10-60g/l之间的铜离子(例如来自于硫酸铜或其他源),浓度为约5-180g/l的酸(如硫酸),且在各种情况中浓度为约30-80ppm的卤素离子(如氯、溴、氟等)。在该示例中,在电镀期间施加电流至衬底,使铜沉积在经打印以及未经打印的区域上,但优先沉积(如沉积较多)发生在不存在抑制剂墨水的区域上。
92.在加速剂弱吸附至衬底表面上而抑制剂强吸附至衬底表面上的替代性实施方案中,在将抑制剂打印至表面上之后,在电镀之前可将加速剂如巯基丙磺酸暴露于整个表面。在该实施方案的一示例中,例如在以抑制剂墨水选择性地打印表面之后,在衬底表面旋转时将包含1g/l巯基丙磺酸(或其他加速剂)的溶液喷洒或以其他方式提供至衬底表面上,以将整个表面暴露于加速剂。虽然不希望受限于任何特定的模型或理论,但加速剂吸附至无抑制剂的金属表面区域上而不在打印抑制剂处与抑制剂反应或置换抑制剂。接着以水喷洒表面以冲洗表面,接着任选地旋干表面。这在表面留下两种区域:吸附有来自打印处理的抑制剂的区域、以及吸附有来自喷洒处理的加速剂的区域。吸附有抑制剂的区域对应于打印有抑制剂墨水的区域,而吸附有加速剂的区域对应于这些区域的相反部分。随后在电镀溶液(其可不具有任何加速剂)中的表面电镀导致两种区域之间的电镀速率高对比度。
93.在电镀衬底之后,可使衬底经受化学蚀刻操作以移除多余的电镀金属、墨水以及晶种层,由此使独立的金属特征根据需要在空间和电气上隔离。蚀刻处理可涉及使衬底与化学蚀刻剂接触。蚀刻处理进行一段足以移除不期望的材料的时间,但该时间不足以完全移除期望的金属特征。
94.图6显示了用于进行电镀的示例性电镀槽。通常电镀装置包含一或多个电镀槽,多个衬底(例如多个晶片)可以在电镀槽中进行处理。图6中仅显示一个电镀槽以维持清晰。为了优化电镀以及确保电镀添加物可以在长期间内作用,应避免电镀添加物与阳极反应。因此,有时电镀槽的阳极与阴极区域可以通过隔膜分离,以使具有不同组成的电镀溶液可以在每一区域中使用。阴极区域中的电镀溶液被称为阴极电解液;阳极区域中的电镀溶液被称为阳极电解液。电镀添加物可被限制于阴极电解液以避免其与阳极的不期望的反应。可使用多种工程设计将阳极电解液与阴极电解液导入电镀装置中。
95.参考图6,示出了根据一实施方案的电镀装置601的示意性横截面图。镀浴603包含电镀液(其具有本文提供的组合物),其以液面605示出。该容器的阴极电解液部适于将衬底接收在阴极电解液内。将晶片607浸渍到电镀液中,并通过例如安装在可旋转主轴611上的“翻盖式”衬底保持器609保持,从而使得翻盖式衬底保持器609能与晶片607一起旋转。具有适合于与本发明一起使用的方面的翻盖式电镀装置的一般说明详细描述于授权给patton等人的美国专利6,156,167以及授权给reid等人的美国专利no.6,800,187中。
96.阳极613在镀浴603内被设置在晶片下方,并通过膜615(优选离子选择性膜)与晶片区分隔开。例如,可使用nafion
tm
阳离子交换膜(cem)。阳极膜下面的区域通常被称为“阳极室”。离子选择性阳极膜615使得在电镀槽的阳极区和阴极区之间能离子连通,同时防止在阳极处产生的颗粒进入晶片附近位置并污染晶片。在电镀过程中重新分配电流流量并由此改善电镀均匀性方面,阳极膜也是有用的。在授权给reid等人的美国专利6,126,798和6,
569,299中提供了合适的阳极膜的详细描述。例如阳离子交换膜之类的离子交换膜是特别适合于这些应用的。这些膜通常是由离聚物材料制成的,离聚物材料如含有磺酸基的全氟化共聚物(如nafion
tm
)、磺化聚酰亚胺类、和本领域技术人员公知的适用于阳离子交换的其它材料。选择的合适的nafion
tm
膜的示例包括可得自dupont de nemours co.的n324和n424膜。
97.在某些情况下,可以控制整个电镀浴中的对流和/或扩散。协助扩散的一种典型的方式是通过由泵617提供的电镀液的对流流动。另外,可以使用振动搅动或声波搅动构件,以及晶片旋转。例如,振动换能器608可以被附接到翻盖式衬底保持器609。电镀液经由泵617连续被提供到镀浴603。通常,该电镀液向上流动穿过阳极膜615和扩散板619至晶片607的中心,然后沿径向向外并跨过晶片607。电镀液也可以从镀浴603的侧面被提供至该浴的阳极区域。电镀液然后溢出镀浴603到溢流储存器621中。电镀液然后被过滤(未示出)并返回到泵617,从而完成电镀液的再循环。在电镀槽的某些配置中,不同的电解液通过其中包含阳极的电镀槽的部分循环,同时谨慎地使用渗透膜或离子选择性膜防止与主要的电镀液混合。
98.参比电极631在单独的室633中位于镀液603的外部,该室通过从主镀浴603溢流而被补充。替代地,在一些实施方案中,参比电极尽可能靠近衬底表面定位,并且参比电极室经由毛细管或通过其它方法连接到晶片衬底的侧面或在晶片衬底的正下方。在一些优选的实施方案中,该装置还包括接触感测引线,该接触感测引线连接到该晶片周缘并被构造为感测在晶片周缘的金属籽晶层的电位,但不携带任何电流到晶片。
99.当以受控的电位进行电镀是合乎期望时,通常采用参比电极631。参比电极631可以是各种常用类型中的一种,例如,汞/硫酸汞电极、氯化银电极、饱和甘汞电极或铜金属电极。在一些实施方案中,除了所述参比电极外,还可以使用与晶片607直接接触的接触感测引线,以实现更精确的电位测量(未示出)。
100.直流电源635可以被用于控制流动至晶片607的电流。电源635具有通过一个或多个滑环、电刷和触点(未示出)电连接到晶片607的负输出引线639。电源635的正输出引线641电连接到位于镀浴603中的阳极613。电源635、参比电极631和接触感测引线(未示出)可以被连接到系统控制器647,从而使得尤其是能够调节提供给电镀槽的元件的电流和电位。例如,控制器可以允许在电位受控和电流受控的状态下电镀。该控制器可以包括程序指令,该程序指令指定需要被施加到电镀槽的各种元件的电流和电压电平以及需要改变这些电平的时间。当施加正向电流时,电源635向晶片607施加偏置以使其相对于阳极613具有负电位。这导致电流从阳极613流动至晶片607,且电化学还原反应(例如cu
2
2e-=cu0)发生在晶片表面(阴极)上,从而导致在晶片的表面上的导电层(例如铜)的沉积。惰性阳极614可以被安装在电镀浴603内的晶片607下面,并通过膜615与晶片区分离。
101.该装置还可以包括用于将电镀液的温度保持在特定水平的加热器645。电镀液可用于将热传递到镀浴中的其它元件。例如,当晶片607被装入到镀浴中时,加热器645和泵617可以接通,以使电镀液通过电镀装置601循环,直到在整个装置中的温度变得大致均匀为止。在一个实施方案中,加热器连接到系统控制器647。系统控制器647可以被连接到热电偶以接收在电镀装置内的电镀液温度的反馈并确定对于额外的加热的需求。
102.控制器将通常包括一个或多个存储器设备和一个或多个处理器。该处理器可以包
括cpu或计算机、模拟和/或数字输入/输出连接、步进电机控制器板等等。在某些实施方案中,控制器控制电镀装置的所有活动。可以将包含根据本文的实施方案的用于控制过程操作的指令的非暂时性机器可读介质耦合到系统控制器上。
103.通常将存在与控制器647相关联的用户界面。用户界面可以包括显示屏幕、装置和/或处理条件的图形软件显示器和用户输入设备,诸如指针设备、键盘、触摸屏、麦克风等。用于控制电镀处理的计算机程序代码可以用任何常规的计算机可读编程语言写入,该计算机可读编程语言例如,汇编语言、c、c 、pascal、fortran等。编译后的目标代码或脚本由处理器执行以执行在程序中识别的任务。可以根据本文的实施方案使用的镀覆装置的一个示例是lam research sabre工具。可以在形成较大电沉积装置的部件中执行电沉积。
104.图7示出了示例性电沉积装置的俯视示意图。电沉积装置700可以包括三个独立的电镀模块702、704和706。电沉积装置700还可以包括被配置用于各种处理操作的三个独立的模块712、714和716。例如,在一些实施方案中,模块712、714和716中的一个或多个可以是旋转漂洗干燥(srd)模块。此类模块可用于在墨水打印于衬底上之后冲洗和干燥衬底。在其它实施方案中,模块712、714和716中的一个或多个可以是后电填充模块(pem),每个被配置成在衬底已经通过电镀模块702、704和706中的一个处理后,对衬底执行操作,诸如倒角边缘去除、背面蚀刻和酸清洁。在某些实施方案中,模块712、714和716中的一或多者可用于在衬底上提供晶种层。在这些或其他实施方案中,模块712、714、及716中的一或多者可被配置成如本文中所述预处理衬底,例如以湿式或干式处理方法从晶种层的上表面移除氧化物层。在这些或其他实施方案中,模块712、714、及716中的一或多者可为被配置成进行本文所述的电流体动力喷射打印处理的电流体动力喷射打印模块。此类电流体动力喷射打印模块可具有参考图5所述的特征中的任一或多者。在这些或其他实施方案中,模块712、714、及716中的一或多者可为如本文中所述被配置成在电镀后化学蚀刻衬底的化学蚀刻模块。在某些实施方案中,可提供额外的模块(未显示)以进行本文中所述的这些功能以及其他功能。
105.电沉积装置700包括中央电沉积室724。中央电沉积室724是容纳用作电镀模块702、704和706中的电镀液的化学溶液的室。电沉积装置700还包括配料系统726,配料系统726可以存储和输送用于电镀液的添加剂。化学稀释模块722可以存储和混合待被用作蚀刻剂的化学品。过滤和泵送单元728可以过滤中央电沉积室724的电镀液,并将其泵送至电镀模块。
106.系统控制器730提供操作电沉积装置700所需的电子和界面控件。系统控制器730(其可以包括一个或多个物理或逻辑控制器)控制电镀装置700的特性的部分或全部。
107.用于监控过程的信号可以通过系统控制器730的模拟和/或数字输入连接件由各种处理工具传感器提供。用于控制过程的信号可以通过处理工具的模拟和数字输出连接件输出。可被监控的处理工具传感器的非限制性示例包括质量流量控制器、压力传感器(例如压力计)、热电偶、光学位置传感器等。经适当编程的反馈和控制算法可以与来自这些传感器的数据一起使用以维持处理条件。
108.传递(hand-off)工具740可以从诸如盒742或盒744之类的衬底盒选择衬底。盒742或744可以是前开式标准盒(foup)。foup是设计用来可靠且安全地将衬底保持在受控环境中并使得衬底能被移除以通过配备有适当的装载口和机器搬运系统的工具进行处理或测
量的外壳。传递工具740可以使用真空附着件或一些其它附连机构保持衬底。
109.传递工具740可以与晶片装卸站732、盒742或744、传输站750或对准器748连接。传递工具746可以从传送站750获得衬底。传送站750可以是狭槽或位置,传递工具740和746可以往来于传送站750传送衬底而不通过对准器748。然而,在一些实施方案中,为了确保在衬底适当地对准传递工具746以精确地传送到电镀模块,传递工具746可以使衬底与对准器748对准。传递工具746也可以将衬底传送到电镀模块702、704或706中的一个,或传送到被构造成用于各种处理操作的三个独立模块712、714和716中的一个。
110.根据上述方法的处理操作的示例可以如下进行:(1)将铜或另一种材料电沉积到电镀模块704中的衬底上;(2)在模块712的srd中冲洗并干燥衬底;以及(3)在模块714中执行边缘斜角去除。
111.被配置为使得衬底能顺序地通过电镀、漂洗、干燥和pem处理操作的高效循环的装置可用于在制造环境中使用的实现方式。为了实现这一点,模块712可以被配置成为旋转漂洗干燥机和倒角边缘移除室。利用这样的模块712,衬底将只需要在电镀模块704和模块712之间进行传送以进行镀铜和ebr操作。在一些实施方案中,本文描述的方法将在包括电镀装置和步进器的系统中实现。
112.图8示意性示出了电沉积装置800的一替代实施方案。在本实施方案中,电沉积装置800具有成组的电镀槽807,每个包含成对的或多个“二重”配置的电镀浴。除了电镀本身以外,电沉积装置800还可以执行各种其它的电镀相关的处理和子步骤,诸如例如旋转漂洗、甩干、金属和硅润湿蚀刻、无电沉积、预润湿和预化学处理、还原、退火、电蚀刻和/或电抛光、光致抗蚀剂剥离以及表面预活化。在某些实施方案中,电沉积装置800可包含用于实现本文中所述的各种操作的一或多个模块,这些操作包含晶种层沉积、电流体动力喷射打印以及化学蚀刻。在图8中,电沉积装置800被示为示意性地自上而下看,只有单一的水平层或“底板”显露在图中,但本领域普通技术人员应当很容易地理解的是,这种装置,例如,lam sabre
tm 3d工具可以具有上下“堆叠”的两个或多个水平层,每层可能具有相同或不同类型的处理站。
113.再次参见图8,待被电镀的衬底806通常通过前端装载foup801供给到电沉积装置800,并且在这个实施例中,经由前端机器手802从foup带到电沉积装置800的主衬底处理区域,前端机器手802可以缩回并将由主轴803在多个维度驱动的衬底806从可访问站中的一个站移动到另一个站,在该实施例中,示出了两前端可访问站804以及两前端可访问站808。前端可访问站804和808可以包括例如预处理站和旋转漂洗干燥(srd)站。从前端机器手802的一侧到另一侧的横向运动利用机器手轨道802a来实现。衬底806中的每一个可以由通过连接到马达(未示出)的主轴803驱动的杯状物/锥体组件(未示出)来保持,并且马达可以附接到安装托架809上。在本实施例中还示出了四个“二重”的电镀槽807,总共八个电镀槽807。系统控制器(未示出)可以耦合到电沉积装置800,以控制电沉积装置800的特性中的部分或全部。系统控制器可被编程或以其它方式被配置成根据本文前面描述的处理来执行指令。
114.可修改衬底处理装置,例如图7和8中所示的,以包含与图5的电流体动力喷射打印装置相关的特征中的任一或多者。
115.在一些实现方案中,控制器是系统的一部分,该系统可以是上述实施例的一部分。
这种系统可以包括半导体处理设备,该半导体处理设备包括一个或多个处理工具、一个或多个处理室、用于处理的一个或多个平台和/或具体的处理组件(晶片基座、气流系统等)。在特定示例中,系统包括关于图2b描述的各种装置,或其任何子集。两个或多个装置可以组合成统一的装置,或者它们都可以彼此不同。上面提供了具体的示例。这些系统可以与用于控制它们在处理半导体晶片或衬底之前、期间和之后的操作的电子器件一体化。电子器件可被称为“控制器”,该控制器可以控制一个或多个系统的各种元件或子部件。根据处理要求和/或系统的类型,控制器可以被编程以控制本文公开的任何处理,包括控制处理气体输送、温度设置(例如,加热和/或冷却)、压强设置、真空设置、功率设置、射频(rf)产生器设置、rf匹配电路设置、频率设置、流速设置、流体输送设置、位置及操作设置、晶片转移进出工具和其它转移工具和/或与具体系统连接或通过接口连接的装载锁。
116.广义而言,控制器可以被定义为接收指令、发布指令、控制操作、启用清洁操作、启用端点测量等等的具有各种集成电路、逻辑、存储器和/或软件的电子器件。集成电路可以包括存储程序指令的固件形式的芯片、数字信号处理器(dsp)、定义为专用集成电路(asic)的芯片和/或一个或多个微处理器或执行程序指令(例如,软件)的微控制器。程序指令可以是以各种单独设置的形式(或程序文件)传送到控制器的指令,该设置定义用于在半导体晶片或系统上或针对半导体晶片或系统执行特定过程的操作参数。在一些实施方案中,操作参数可以是由工艺工程师定义的用于在制备晶片的一或多个(种)层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或管芯期间完成一个或多个处理步骤的配方(recipe)的一部分。
117.在一些实现方案中,控制器可以是与系统集成、耦合或者说是通过网络连接系统或它们的组合的计算机的一部分或者与该计算机耦合。例如,控制器可以在“云端”或者是晶片厂(fab)主机系统的全部或一部分,从而可以允许远程访问晶片处理。计算机可以启用对系统的远程访问以监控制造操作的当前进程,检查过去的制造操作的历史,检查多个制造操作的趋势或性能标准,改变当前处理的参数,设置处理步骤以跟随当前的处理或者开始新的处理。在一些实施例中,远程计算机(例如,服务器)可以通过网络给系统提供处理配方,网络可以包括本地网络或互联网。远程计算机可以包括允许输入或编程参数和/或设置的用户界面,该参数和/或设置然后从远程计算机传送到系统。在一些实施例中,控制器接收数据形式的指令,该指令指明在一个或多个操作期间将要执行的每个处理步骤的参数。应当理解,参数可以针对将要执行的处理类型以及工具类型,控制器被配置成连接或控制该工具类型。因此,如上所述,控制器可以例如通过包括一个或多个分立的控制器而为分布式,这些分立的控制器通过网络连接在一起并且朝着共同的目标(例如,本文所述的处理和控制)工作。用于这些目的的分布式控制器的实施例可以是与结合以控制室上的处理的一个或多个远程集成电路(例如,在平台水平或作为远程计算机的一部分)通信的室上的一个或多个集成电路。
118.在非限制性的条件下,示例性系统可以包括等离子体蚀刻室或模块、沉积室或模块、旋转清洗室或模块、金属电镀室或模块、清洁室或模块、倒角边缘蚀刻室或模块、物理气相沉积(pvd)室或模块、化学气相沉积(cvd)室或模块、原子层沉积(ald)室或模块、原子层蚀刻(ale)室或模块、离子注入室或模块、轨道室或模块、以及在半导体晶片的制备和/或制造中可以关联上或使用的任何其它的半导体处理系统。
119.如上所述,取决于工具将要执行的一个或多个处理步骤,控制器可以与一个或多个其它的工具电路或模块、其它工具组件、组合工具、其它工具界面、相邻的工具、邻接工具、位于整个工厂中的工具、主机、另一个控制器、或者在将晶片的容器往来于半导体制造工厂中的工具位置和/或装载口搬运的材料搬运中使用的工具通信。结论
120.本文中所述的技术能够以高精准度形成极小尺寸(如<0.5μm)的精细线互连件、垫、以及其他金属特征。有利地,可以在不使用参考图1a及1b所说明的传统处理流程中使用的许多传统处理、装置以及材料的情况下实施技术。例如,本文中的技术不需要使用光致抗蚀剂、光刻装置、光致抗蚀剂烘烤装置、光致抗蚀剂固化装置、光掩模、显影化学品和装置、氧等离子体除渣装置、或光致抗蚀剂清理及剥除装置。因此,显著减少了与形成精细线互连件、垫以及其他金属特征相关的所有权及处理费用。电流体动力喷射打印能写细线而满足现行及未来的市场技术需求。例如,封装rdl配线目前涉及形成>5μm的线及空间,但在接下来的数年内会朝向>2μm以及更小的方向移动。相比于贵得多以及复杂的传统处理流程,本文中所述的技术提供以低成本形成此类特征的一条路。
121.尽管已为了清楚理解的目的而详述了前述实施方案,但显而易见,可在所附权利要求的范围内实施某些变更及修改。应注意,实施本发明的实施方案的处理、系统以及设备有许多替代方式。因此,应将本发明的实施方案视为说明性的,而非限制性的,且这些实施方案不应受限于本文中所提及的细节。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献