一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种适用于中低温烧结的负温度系数热敏电阻材料

2022-09-15 06:13:08 来源:中国专利 TAG:


1.本发明涉及半导体热敏电阻领域,具体是一种制备负温度系数(ntc)热敏电阻陶瓷材料。本发明所述ntc热敏陶瓷电阻可在950℃以下烧结制得,适合中低温烧结和陶瓷共烧结制备ntc热敏电阻。本发明所述ntc热敏电阻适用于温度测量、温度控制、抑制浪涌、线路补偿和红外近红外探测等领域应用的温度敏感元件。


背景技术:

2.负温度系数(negative temperature coefficient,ntc)热敏电阻陶瓷材料由于其高敏感度、高精确度以及低成本占领着重要地位,已广泛用于医疗电器、汽车工业、家用电器甚至航空航天等诸多家用及工业领域。当前商用的常温型ntc热敏电阻陶瓷材料采用的主要是由过渡金属氧化物组成的ab2o4型尖晶石化合物,如ni—mn—o,co—mn—o,cu—fe—o,ni—co—mn—o体系。传统的尖晶石结构ntc热敏电阻材料线性度好、材料常数b值较高、室温电阻率(ρ
25
)高。如中国发明专利cn109734423a公开的mn—co—ni—o基铜、钙共掺杂的薄膜热敏材料,室温电阻值在82kω—180kω,材料常数在3400k左右;中国发明专利cn112802648a公布的由钴、锰、镍、铁、锌五种元素的氧化物组成高熵单一尖晶石相氧化物的热敏电阻,材料常数b值为3500—3800k,室温电阻率为6.5—12kω
·
cm;中国发明专利cn108640658a公布的掺杂稀土铈的热敏电阻材料,其材料常数在4000k左右,室温电阻率约为930ω
·
cm。
3.随着电子信息与传感技术的发展,对ntc热敏电阻材料与性能要求也越来越广。所以开发一种能保证较高的b值、且能对ρ
25
进行有效调节的材料体系是目前ntc热敏电阻材料需要突破和关注的一重要研究方向。如中国发明专利cn110642603a公布的一种以镍氧化物为基体、通过掺杂硼和钠元素的含量以及改变对应掺杂量来调节热敏电阻元件的室温电阻值和材料常数,达到材料常数2000-9000k,室温电阻率50ω
·
cm—1mω
·
cm;中国发明专利cn111533552a公开的一种tio2基sb、b、p掺杂的热敏电阻器,材料常数3000—7000k,室温电阻率100kω
·
cm—100mω
·
cm;中国发明专利cn109265159a公开的zno基锌、铝、镧、铜掺杂的热敏电阻材料,材料常数2000-6000k,室温电阻率600ω
·
cm—4mω
·
cm。
4.铋铜矿cubi2o4是一种属于四方晶系的p型半导体材料。近年来,cubi2o4材料由于其良好的光吸收性,在光电领域作为光催化剂、电极等被深入研究。如中国发明专利cn114133773a涉及的光催化剂cubi2o4/α-mno2空气净化涂料;中国发明专利cn113957394a公开的采用脉冲激光溅射法制备混合膜,再通过退火使混合膜形成cubi2o4薄膜,具有比传统cubi2o4材料更高的光电转化效率;中国发明专利cn114361424a公开的sm-w共掺杂cubi2o4锂离子电池负极材料,改善了电极材料的电子导电率和离子导电率,同时可以调控了材料形貌。
5.但是,关于cubi2o4基材料的ntc热敏电阻、特别是对该材料的ρ
25
进行调节且呈现较高的b值的ntc热敏性能的研究与报道极少。
6.随着电子信息与传感技术的发展,ntc热敏电阻的应用领域也越来越广,对热敏元
件与器件中的ntc功能电阻的呈现形式要求也越来越多,其中薄膜或多层膜是一个关键的发展趋势。低温共烧结热敏元件的制备是薄膜与多层膜生产中必然应用到的关键技术之一。开发适用于中低烧结温度的ntc热敏电阻材料是实现低温共烧结制备的关键。本发明提出的cu(bi
1-x
sm
x
)2o4系ntc热敏电阻陶瓷的烧结温度低于950℃,能够适用于低温共烧结的制备技术,且cu(bi
1-x
sm
x
)2o4系陶瓷呈现较高的ntc材料常数b值和宽范围可调的电阻室温电阻率ρ
25
。因此,开发cu(bi
1-x
sm
x
)2o4系ntc热敏电阻材料具有创新性和实际应用价值。
7.本发明以cu(bi
1-x
sm
x
)2o4为设计组分开发ntc热敏电阻材料,通过调节材料中的bi和sm含量以实现ρ
25
的有效调节并保持较高的材料常数b值,室温电阻率ρ
25
在0.96—812.83kω
·
cm范围内可调、材料常数b值保持在3655-4110k范围内。该材料体系的ntc热敏电阻制备流程简单,能够适合不同的材料制备工艺,容易实现从实验室制备到批量化的生产,热敏电阻制备成本低。


技术实现要素:

8.本发明的目的在于提供一种适用于中低温烧结、且在保持较高的材料常数b值及前提下实现室温电阻率的大范围的ntc数热敏电阻材料。
9.本发明的ntc热敏电阻材料的成分组成为cu(bi
1-x
sm
x
)2o4,其中x=0.1—0.96。
10.本发明的ntc热敏电阻材料的成分组成为cu(bi
1-x
sm
x
)2o4,配方中含有cu、bi、sm元素,其原材料可以是含这些元素的单质、氧化物、无机盐或有机盐。
11.按本发明实施例所述制备方法制备得到的cu(bi
1-x
sm
x
)2o4陶瓷的烧结温度低于950℃。本发明所述ntc热敏电阻材料的电性能:可实现以下参数要求:室温电阻率0.96kω
·
cm≤ρ
25
≤812.83kω
·
cm,材料常数3655k≤b≤4110k,温度系数tcr
25
=-4.28~-2.67%/k。
12.本发明涉及的ntc热敏电阻材料的特色和优势表现在于:

材料成分简单;

烧结温度低;

适合陶瓷、厚膜、薄膜、多层膜ntc热敏电阻元件的生产;

通过调整元素的含量可以大范围地调节热敏电阻元件的室温电阻值、且保持较高的材料常数与温度系数。
13.本发明的重点在于热敏电阻材料的成分配方,实际应用过程中可以根据需要对合成方法和生产工艺进行相应调整,灵活性大。例如,原材料可选用含有这些元素的单质、氧化物、无机盐或有机盐;合成方法可采用固态反应法、共沉淀法、溶胶-凝胶法、气相沉积法或其它陶瓷材料的制备方法;可以由本发明设计的成分配方组成制备ntc热敏陶瓷元件、热敏薄膜元件、热敏厚膜元件、共烧陶瓷多层膜元件。
14.本发明的内容结合以下实施例做进一步的说明。本发明的ntc热敏电阻陶瓷实施例中以氧化铋、氧化铜、氧化钐为原料,经过研磨、煅烧、造粒、成型、烧结、涂烧电极工艺制备得到。以下实施例只是符合本发明技术内容的几个实例,并不说明本发明仅限于以下述实例所述内容。本发明的重点在于ntc热敏电阻材料的成分配方,所述原材料、工艺方法和制备与生产步骤可以根据实际生产条件进行相应的调整,灵活性大。
附图说明
15.附图1为实施例中热敏陶瓷电阻材料的电阻率随温度变化(电阻率-温度倒数)特征图。该图说明所有实施例材料均呈现典型的ntc特性。
具体实施方式
16.本发明提供一种适用于中低温烧结的负温度系数热敏电阻材料,下面结合具体实例对本发明进行详细说明。
17.实施例1
18.本实施例按化学成分组成为cu(bi
1-x
sm
x
)2o4进行配料,其中x=0.1。初始原材料选自氧化铋(bi2o3)、氧化铜(cuo)、氧化钐(sm2o3)。材料制备按以下实验的工艺步骤:
19.步骤1:根据化学式cu(bi
0.9
sm
0.1
)2o4进行配料,用分析天平称取8.3872g的bi2o3、1.5909g的cuo、0.6974g的sm2o3。
20.步骤2:将步骤1称取的原材料在玛瑙研钵中进行充分研磨、混合均匀;
21.步骤3:将步骤2中得到的粉体放入刚玉坩埚,在温度600℃下煅烧10h,即得到cu(bi
0.9
sm
0.1
)2o4粉体;
22.步骤4:将步骤3中得到的cu(bi
0.9
sm
0.1
)2o4粉体加入浓度10%的聚乙烯醇水溶液粘合剂,在玛瑙研钵中进行充分研磨、造粒,然后压制成直径12mm、厚度2~3mm的坯;
23.步骤5:将步骤4中得到的坯体进行烧结,首先升温至600℃,保温1h;继续升温至785℃,保温1h,得到cu(bi
0.9
sm
0.1
)2o4热敏电阻陶瓷片;升温速率均为每分钟5℃,冷却过程为随炉冷却。
24.步骤6:将步骤5中得到的cu(bi
0.9
sm
0.1
)2o4陶瓷片,用砂纸磨去两面表层,并两面磨平,清洗干净,并经100℃保温1小时烘干。
25.步骤7:将步骤6得到陶瓷裸片的正反两面涂覆银浆电极,在600℃下退火5min,即得ntc热敏电阻元件。
26.步骤8:将步骤7制得的热敏电阻元件进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据。
27.所制备的材料的电阻率对数-温度倒数的电阻-温度特性见图1。室温电阻率ρ
25
=59.73kω
·
cm,材料常数b=4061k,温度系数tcr=-4.28%/k。
28.实施例2
29.本实施例按化学成分组成为cu(bi
1-x
sm
x
)2o4进行配料,其中x=0.9。初始原材料选自氧化铋(bi2o3)、氧化铜(cuo)、氧化钐(sm2o3)。材料制备按以下实验的工艺步骤:
30.步骤1:根据化学式cu(bi
0.1
sm
0.9
)2o4进行配料,用分析天平称取0.9319g的bi2o3、1.5909g的cuo、6.2766g的sm2o3;
31.步骤2:将步骤1称取的原材料在玛瑙研钵中进行充分研磨、混合均匀;
32.步骤3:将步骤2中得到的粉体放入刚玉坩埚,在温度600℃下煅烧10h,即得到cu(bi
0.1
sm
0.9
)2o4粉体;
33.步骤4:将步骤3中得到的cu(bi
0.1
sm
0.9
)2o4粉体加入浓度10%的聚乙烯醇水溶液粘合剂,在玛瑙研钵中进行充分研磨、造粒,然后压制成直径12mm、厚度2~3mm的坯;
34.步骤5:将步骤4中得到的坯体进行烧结,首先升温至600℃,保温1h;继续升温至850℃,保温1h,得到cu(bi
0.1
sm
0.9
)2o4热敏电阻陶瓷片;升温速率均为每分钟5℃,冷却过程为随炉冷却。
35.步骤6:将步骤5中得到的cu(bi
0.1
sm
0.9
)2o4陶瓷片,用砂纸磨去两面表层,并两面磨平,清洗干净,并经100℃保温1小时烘干。
36.步骤7:将步骤6得到陶瓷裸片的正反两面涂覆银浆电极,在600℃下退火5min,即得ntc热敏电阻元件。
37.步骤8:将步骤7制得的热敏电阻元件进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据。
38.所制备的材料的电阻率对数-温度倒数的电阻-温度特性见图1。室温电阻率ρ
25
=8.05kω
·
cm,材料常数b=3987k,温度系数tcr=-4.20%/k。
39.实施例3
40.本实施例按化学成分组成为cu(bi
1-x
sm
x
)2o4进行配料,其中x=0.96。初始原材料选自氧化铋(bi2o3)、氧化铜(cuo)、氧化钐(sm2o3)。材料制备按以下实验的工艺步骤:
41.步骤1:根据化学式cu(bi
0.04
sm
0.96
)2o4进行配料,用分析天平称取0.3728g的bi2o3、1.5909g的cuo、6.6950g的sm2o3;
42.步骤2:将步骤1称取的原材料在玛瑙研钵中进行充分研磨、混合均匀;
43.步骤3:将步骤2中得到的粉体放入刚玉坩埚,在温度600℃下煅烧10h,即得到cu(bi
0.04
sm
0.96
)2o4粉体;
44.步骤4:将步骤3中得到的cu(bi
0.04
sm
0.96
)2o4粉体加入浓度10%的聚乙烯醇水溶液粘合剂,在玛瑙研钵中进行充分研磨、造粒,然后压制成直径12mm、厚度2~3mm的坯;
45.步骤5:将步骤4中得到的坯体进行烧结,首先升温至600℃,保温1h;继续升温至920℃,保温1h,得到cu(bi
0.04
sm
0.96
)2o4热敏电阻陶瓷片;升温速率均为每分钟5℃,冷却过程为随炉冷却。
46.步骤6:将步骤5中得到的cu(bi
0.04
sm
0.96
)2o4陶瓷片,用砂纸磨去两面表层,并两面磨平,清洗干净,并经100℃保温1小时烘干。
47.步骤7:将步骤6得到陶瓷裸片的正反两面涂覆银浆电极,在600℃下退火5min,即得ntc热敏电阻元件。
48.步骤8:将步骤7制得的热敏电阻元件进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据。
49.所制备的材料的电阻率对数-温度倒数的电阻-温度特性见图1。室温电阻率ρ
25
=2.06kω
·
cm,材料常数b=3655k,温度系数tcr=-3.81%/k。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献