一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于检测卡那霉素的比色传感体系

2022-09-03 19:26:46 来源:中国专利 TAG:


1.本发明涉及纳米材料、生物传感器与食品安全检测技术领域,特别涉及一种用于检测卡那霉素的比色传感体系。


背景技术:

2.卡那霉素(kan)是一种重要的氨基糖苷类抗生素,由于其强大的杀菌作用,已得到广泛应用。然而,kan滥用可能导致其在动物衍生食物中残留,进而通过食物链进入人体。kan在人体中的长期蓄积,可引起听觉系统、泌尿系统、神经系统、消化系统等不可逆的进行性损伤,严重者甚至休克死亡。因此,开发一种简单、实用、灵敏的方法检测食品中卡那霉素残留十分必要。
3.传统的kan的高灵敏检测技术包括高效液相色谱(hplc)、高效液相色谱-串联质谱(hplc-ms/ms)、毛细管电泳(ce)等。这些方法准确、稳定,但柱前衍生、设备运行维护等环节对检测人员专业程度要求较高,因此难于实现常规现场监管及生活普及。
4.因此,研发一种操作简单、响应快速,实际应用价值高的卡那霉素检测技术成为现阶段亟需解决的技术问题。


技术实现要素:

5.本发明提出了一种用于检测卡那霉素的比色传感体系,以解决现有技术中对检测人员专业程度要求较高,因此难于实现常规现场监管及生活普及的问题。
6.为了解决上述技术问题,本发明所采用的技术方案包括:提出一种用于检测卡那霉素的比色传感体系,该比色传感体系主要包括捕获探针、信号探针、核酸外切酶和显色底物。
7.进一步地,该捕获探针为kan适配体apt与生物素修饰的cdna1杂交形成双链dna,再通过生物素与链霉亲和素的特异性反应附着在链霉亲和素磁珠sdb形成。
8.进一步地,该信号探针为将cdna1的互补链cdna2固定在三合一化学纳米酶hemin@fe-mil-88nh2/ptnp表面形成。
9.进一步地,该cdna2通过pt-s键固定在所述三合一化学纳米酶hemin@fe-mil-88nh2/ptnp表面。
10.进一步地,该核酸外切酶为exo i。
11.进一步地,该核酸外切酶exo i可使特异性结合于apt的kan分离。
12.进一步地,该核酸外切酶exo i可以剪切单链apt使kan再次被释放以参与循环,进一步结合更多的apt从而分离出更多单链cdna1以进行信号扩增。
13.进一步地,由于所述cdna1与cdna2互补,可以在sdb表面特异性捕获所述信号探针。
14.进一步地,该显色底物为3,3’,5,5
’‑
四甲基联苯胺,可通过催化氧化生成蓝色产物oxtmb,通过信号响应依据吸光度变化对kan进行定性定量分析。
15.进一步地,该hemin@fe-mil-88nh2/ptnp同时具备hemin、fe-mil-88nh2和ptnps的
过氧化物酶催化效果。
16.与现有技术相比,本发明提供了一种用于检测卡那霉素的比色传感体系,具备以下有益效果:
17.1、本发明合成了三合一纳米材料(hemin@fe-mil-88nh2/ptnp),由于hemin、fe-mil-88nh2和ptnps的协同催化作用,纳米杂种具有优越的过氧化物酶活性;通过对催化动力学进行分析,得到该纳米酶的米氏常数(km)为0.078mm,最大反应速率(v
max
)为34.05
×
10-8m·
s-1
,证明了其对tmb具有较强的亲和力和较高的催化效率;同时该纳米酶的合成方法简单,产率高,易于储存,且具有优异的稳定性。
18.2、本发明三合一纳米材料作为纳米酶信号放大效果明显,且同时将exo i应用于辅助目标物循环从而进行信号放大;多种信号放大技术相结合,使得该方法的线性范围宽,灵敏度高;同时,使用适配体作为识别元件,能够排除其他非特性物质的影响,使得该方法具有良好的特异性。
19.3、本发明提出的比色检测方法在牛奶和虾样品检测中表现出较高的准确性和精密度,且该方法在食品检测过程中操作简单、响应快速,实际应用价值高。
附图说明
20.图1示出了本发明实施例的一种基于三合一纳米材料作为协同纳米酶辅助外切核酸酶i信号扩增的比色适配体传感器检测卡那霉素的原理图;
21.图2示出了本发明实施例的一种比色法检测kan的优化检测条件图;其中,(a)时间、(b)温度、(c)ph和(d)tmb浓度、(e)hemin@fe-mil-88nh2/ptnp浓度、(f)h2o2浓度优化;误差条表示三个独立测量值的相对标准偏差;
22.图3示出了本发明实施例的一种kan浓度的对数与650nm处的吸光度值之间的标准曲线图;其中,误差条表示三个独立测量值的相对标准偏差;
23.图4示出了本发明实施例的一种应用制备的hemin@fe-mil-88nh2/ptnp信号探针在4℃下存储20天的稳定性检测结果图;
24.图5示出了本发明实施例的一种在牛奶和虾样品中加入了不同浓度的kan(0.05ng ml-1
、0.5ng ml-1
、5ng ml-1
、50ng ml-1
)的加标-回收实验结果图。
具体实施方式
25.为更好地理解本发明,将给出具体实施例对本发明作出进一步说明,然而应当理解,所阐述实施例为示例性实施例,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整地传达给本领域的技术人员。
26.下述实施例中,若未特别指明,所采用的技术手段为本领域技术人员所熟知的常规手段,本发明中的试剂和材料为市场或其他公共渠道获得。
27.本发明所涉实施例中,六水合氯化铁(fecl3·
6h2o)、2-氨基对苯二甲酸(nh
2-bdc)和血红素(hemin)购自上海麦克林生化有限公司;氯铂酸(h2ptcl6)和n,n-二甲基甲酰胺(dmf)来自上海莱恩技术开发有限公司;链霉亲和素磁珠(sdb)购自海狸生物科学公司;硼氢化钠(nabh4)购自阿拉丁化学有限公司;卡那霉素(kan)、氯霉素(cap)、土霉素(otc)、硫
酸庆大霉素(gs)、链霉素(str)、金霉素(ctc)和3,3’,5,5
’‑
四甲基联苯胺(tmb)来自北京太阳能科技有限公司;tris(2-羧乙基)盐酸盐(tcep)、牛白蛋白(bsa)、外切酶i(exoi)和所寡核苷酸序列由上海生工生物技术有限公司提供;dna序列由上海生工生物有限公司合成并经高效液相色谱纯化;磷酸盐缓冲盐水(pbs)(0.1m,ph 7.4)由氯化钠、na2hpo4·
12h2o、氯化钾和磷酸一钾组成;将ch3cooh-ch3coona的原液混合制备乙酸钠-乙酸缓冲液(ph 3.8)。除非另有说明,其他化学品和试剂均为分析试剂(a.r.)。分级使用,无需进一步净化。
28.本发明的原理在于,参加图1,本研究发明合成了三合一纳米酶(hemin@fe-mil-88nh2/ptnp),并将cdna2(cdna1的互补链)通过pt-s键固定在其表面,形成信号探针(hemin@fe-mil-88nh2/ptnp-cdna2)。将kan适配体(apt)与生物素修饰的cdna1(kan适配体的互补链)杂交形成双链dna(cdna1/apt),并通过生物素与链霉亲和素的特异性反应附着在链霉亲和素磁珠(sdb)形成捕获探针(sdb-cdna1/apt)。在kan和exo i存在的情况下,apt与kan特异性结合,并与cdna1分离。此外,exo i可以剪切单链apt使kan再次被释放以参与循环,在一定时间内结合更多的apt从而分离出更多的单链cdna1以进行信号扩增。由于cdna1也可以与cdna2碱基互补配对结合,因此,可以在sdb表面捕获hemin@fe-mil-88nh2/ptnp。因此,该体系为信号级联放大的比色传感体系。该三合一纳米酶具有优异的过氧化物酶催化活性,可以在h2o2存在的情况下有效催化tmb氧化成蓝色产物(oxtmb),从而产生信号响应,根据650nm处吸光度的变化对kan进行定量分析。
29.本发明的信号级联放大比色传感体系,具备采用适体-配体原理构成的特异性捕获探针,可实现特异性捕获目标物的功能;被特异性识别及捕获的目标物竞争结合捕获探针,可使原位配体被目标物竞争脱离,从而释放适体结合位点;具备三合一化学纳米酶,目标物含量越大,结合被释放的适体表位的化学纳米酶的量越大,催化显色底物的效率越高,且目标物含量大小与颜色深浅线性相关;本发明中通过利用核酸外切酶ⅰ,使检测体系中痕量目标物可循环参与检测反应,从而实现信号级联放大;将本发明一种用于信号级联放大的比色传感体系,应用于卡那霉素的检测,检测限为2pgml-1
,实现了超灵敏检测。
30.实施例1
31.在本发明的一些实施例中,提供了一种hemin@fe-mil-88nh2的制备方法。
32.采用水热法合成hemin@fe-mil-88nh2纳米材料。在磁搅拌作用下,将0.187g(0.692mm)的fecl3·
6h2o,0.126g(0.692mm)的nh
2-bdc和0.226g(0.346mm)hemin溶解在15ml的dmf中;随后,将混合物溶液置于50ml圆底烧瓶中并在120℃的油浴中反应中4h;在加热15min后,向混合溶液中加入197μl ch3cooh(3.45mm),使所合成mofs的尺寸更加均匀。反应结束后将溶液冷却至室温,并分别用n,n-二甲基甲酰胺和乙醇洗涤3次。最后,将纯化的产物在60℃真空下干燥,得到hemin@fe-mil-88nh2固体粉末。
33.实施例2
34.在本发明的一些实施例中,提供了一种hemin@fe-mil-88nh2/ptnp的制备方法。
35.采用硼氢化钠还原法制备了hemin@fe-mil-88nh2/ptnp纳米材料。将5ml hemin@fe-mil-88nh2(1mg ml-1
)与5ml h2ptcl6(1%)混合,超声处理20min;随后,在磁搅拌下,将10ml硼氢化钠溶液(0.1m)逐滴加入上述混合溶液中,进一步磁搅拌30min;然后,用水和乙醇分别洗涤3次,分离多余的反应物;最后,将合成的hemin@fe-mil-88nh2/ptnp复合材料在60℃的真空烘箱中干燥过夜,得到hemin@fe-mil-88nh2/ptnp固体粉末。
36.实施例3
37.在本发明的一些实施例中,提供了一种磁珠的表面修饰方法。
38.将20μl apt(10μμ)和20μl cdna1(10μμ)混合,在95℃加热5min退火;随后,将溶液缓慢冷却至室温,并加入50μl sdb(5mg ml-1
),并在37℃的金属浴中孵育90min;孵育结束后用pbs洗涤sdb三次,以去除游离dna。由于生物素和链霉亲和素之间的特异性反应,双链cdna1/apt在sdb表面紧密结合形成捕获探针(sdb-cdna1/apt)。为了消除其非特异性吸附,将sdb-cdna1/apt在500μl bsa(2%,w/v)中孵育1h;经过磁分离后,将形成的sdb-cdna1/apt重悬在50μlpbs中,并在4℃下保存。
39.实施例4
40.在本发明的一些实施例中,提供了一种hemin@fe-mil-88nh2/ptnp的表面修饰方法。
41.将2μl tcep(10mm)与20μl cdna2(10μμ)混合;然后,在室温下孵育1小时以还原二硫键;随后,将100μl的hemin@fe-mil-88nh2/ptnp溶液(0.8mg ml-1
)加入到该溶液中,在4℃下孵育过夜;cdna2通过pt-s键被有效地固定在hemin@fe-mil-88nh2/ptnp表面形成信号探针;将该信号探针用pbs洗涤三次以去除游离的dna;将hemin@fe-mil-88nh2/ptnp-cdna2偶联物重悬在50μl pbs中,并在4℃下保存。
42.实施例5
43.在本发明的一些实施例中,提供了一种比色法检测kan的条件优化实验结果。
44.参见图2,优化了比色法检测kan的反应时间、温度、ph值以及hemin@fe-mil-88nh2/ptnp浓度、tmb和h2o2的浓度。本方法最佳反应时间为25min,温度为37℃,ph值为3.6;hemin@fe-mil-88nh2/ptnp、tmb、h2o2最佳反应浓度分别为0.8mg/ml、2mm、0.03nm。
45.实施例6
46.在本发明的一些实施例中,提供了一种样品检测方法。
47.将8μl不同浓度的kan标准品加入离心管中,随后将8μl sdb-cdna1/apt,4μl pbs和10μl exoi(200uml-1
)与上述溶液混合,在37℃的金属浴中反应1h;经过磁分离洗涤3次后,在沉淀物中加入20μl hemin@fe-mil-88nh2/ptnp-cdna2,在37℃的金属浴中反应1h;磁分离洗涤三次后,将沉淀溶解于300μlch3cooh-ch3coona缓冲溶液(ph 3.6)中,加入100μl tmb-h2o2溶液;最后,混合溶液在37℃孵育25min,测定650nm处的吸光度值。
48.实施例7
49.在本发明的一些实施例中,提供一种比色法检测不同浓度的kan标准品标准曲线的绘制及结果。
50.参见图3,在最佳实验条件下,采用所提出的比色法检测不同浓度的kan标准品(0.01ng/ml、0.1ng/ml、1ng/ml、5ng/ml、10ng/ml、50ng/ml、100ng/ml)。随着kan浓度的增加,在650nm处的紫外-可见吸收强度逐渐增加,且650nm处的吸光度强度与kan浓度的对数呈最优的线性相关,线性回归方程为:y=0.1049x 0.2868,r2=0.9971;检测限为2pg ml-1
(4.1pm)。
51.实施例8
52.在本发明的一些实施例中,提供了一种特异性检测方法及结果。
53.参见图4,采用该策略检测了五种不同浓度的氯霉素(cap)、土霉素(otc)、硫酸庆
大霉素(gs)、链霉素(str)、金霉素(ctc)及五种抗生素与不同浓度kan(0.01ng ml-1
、0.01ng ml-1
、1ng ml-1
、10ng ml-1
、100ng ml-1
)混合物样品。结果显示只有在有kan存在的情况下,吸光度才会随着抗生素浓度的增加而逐渐增加,表明该方法对kan具有较强的特异性。
54.实施例9
55.在本发明的一些实施例中,提供了一种稳定性检测方法及结果。
56.参见图5,将所制备的hemin@fe-mil-88nh2/ptnp信号探针在4℃下存储20天,以验证本发明所涉hemin@fe-mil-88nh2/ptnp信号探针制备方法的稳定性。使用该信号探针分析50ng ml-1
kan,并记录650nm处吸光度值。由实验结果可以看到,随着储存时间的增加,吸光度几乎没有下降,这表明本发明所涉比色适配体传感器具有优越的稳定性。
57.实施例10
58.在本发明的一些实施例中,提供了一种加标回收实验及结果。
59.为了验证本实验比色传感器的实际应用,本发明在牛奶和虾样品中加入了不同浓度的kan(0.05ng ml-1
、0.5ng ml-1
、5ng ml-1
、50ng ml-1
)。上述样品分别采用本实验比色检测方法和elisa试剂盒进行测定。该方法的加标回收率和相对标准差(rsds)分别为93.03%~105.54%和2.19%~5.49%。而elisa试剂盒可检测0.5ng ml-1
、5ng ml-1
和50ng ml-1
的kan浓度,加标回收率和rsds分别为81.38%~107.57%和1.55%~8.80%。该方法与elisa试剂盒的检测结果吻合良好。相比之下,本发明的比色适配体传感器表现出较低的lod,更宽的检测范围,更快的响应和更好的稳定性。结果表明,本发明所建立的比色检测法应用前景广泛,并为kan检测提供了一种可靠的替代方法。
60.以上仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本技术的权利要求范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献