一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

层叠剥离容器的制作方法

2022-08-03 01:41:02 来源:中国专利 TAG:

层叠剥离容器
本技术是申请号为“202010986536.0”,申请日为2017年4月10日,发明名称为“层叠剥离容器”之申请的分案申请。
【技术领域】
1.本发明涉及层叠剥离容器,其特征为伴随内置物的减少,内袋收缩的层叠剥离容器。


背景技术:

2.已知有具备外壳与内袋且伴随内置物的减少,内袋收缩的层叠剥离容器(例如专利文献1~专利文献4)。
3.专利文献1的容器可以认为是通过压缩外壳排出内置物,排出内置物后外壳回复原型。
4.并且,专利文献2的层叠剥离容器,在形成于容器主体外壳的外气导入孔安装阀部件,这个阀部件通过相对于容器主体移动,从而开闭外气导入孔的方式构成。
5.进一步,专利文献3所述的层叠剥离容器中,安装于容器主体口部的盖帽内藏阀。专利文献4所述的层叠剥离容器中,外壳胴部的内侧设有阀。【现有技术文献】【专利文献】
6.【专利文献1】日本特开2015-227206号公报【专利文献2】wo/2015/080015【专利文献3】日本特开2013-35557号公报【专利文献4】日本特开平4-267727号公报


技术实现要素:

【发明要解决的课题】
7.(第1观点及第2观点)但是,专利文献1及专利文献2的结构中,通过借由内袋将阀部件推向外壳,可能妨碍阀部件的移动。阀部件的移动被妨碍时,排出内置物后,无法在适当的时刻通过外气导入孔在外壳与内袋之间的空間导入外气,其结果可能使外壳的复原性变差。
8.(第3观点)并且、如上所述设有阀的结构,虽然内置物的排出性及外壳的复原性优秀,但有可能引起阀的故障。
9.鉴于这种情况做出了本发明,第1观点及第2观点的目的是,通过在排出内置物后将外气迅速导入到外壳与内袋之间的空间,从而提供一种层叠剥离容器具有良好的外壳复原性。第3观点的目的是,提供一种层叠剥离容器,其在未设有阀的情况下也确保了内置物的排出性及外壳的复原性。
【解决课题的手段】
10.上述问题可以通过以下描述的本发明的第1至第3观点中的至少一个来解决。以下第1至第3观点中描述的内容可以彼此组合,并且通过组合可获得更良好的效果。根据本发明的第1观点的内容实现第1观点的目的及效果、根据本发明的第2观点的内容实现第2观点的目的及效果、根据本发明的第3观点的内容实现第3观点的目的及效果。
11.根据本发明的第1观点,提供一种层叠剥离容器,具备容器主体和阀部件,其中,容器主体具有外壳与内袋且伴随内置物的减少上述内袋收缩,阀部件调节上述外壳与上述内袋之间的中间空间和上述容器主体的外部空间之间的空气的进出。上述容器主体具备收容部和口部,其中,收容部收容上述内置物,口部从上述收容部排出上述内置物。上述收容部具备柱状的胴部和连接上述胴部和上述口部的肩部,上述肩部设有收纳上述阀部件的阀收纳凹部,在上述阀收纳凹部内的上述外壳与上述内袋之间的中间空间设有导入外气的外气导入孔。上述阀部件安装在上述外气导入孔,上述阀收纳凹部具备底面和设于上述底面周向的两侧的周向侧面,上述阀收纳凹部的侧面设于上述胴部侧,或者,设于上述胴部侧的胴部侧侧面相对于上述底面的倾斜角度为45度以下的方式构成。
12.专利文献1中,由于阀收纳凹部底面的整个圆周被侧面包围,在外气导入孔的相邻位置,外壳与内袋为以叠碗方式层叠而成的形状。因此,内袋不易从外壳隔开,存在内袋将阀部件推向外壳的情况。另另一方面面,本发明因在胴部侧,阀收纳凹部的底面顺利连接收容部的外周表面,在阀收纳凹部的胴部侧,内袋不易受到外壳的限制,结果,内袋易于从外壳隔开,外气迅速导入外壳与内袋之间的空间而提升外壳的复原性。
13.在下文中将举例说明本发明的各种实施形态。以下实施形态可彼此组合。优选上述阀收纳凹部设为可从上述肩部达到上述胴部与上述肩部的边界。优选,在沿着上述边界与上述阀收纳凹部相邻部位的壁厚作为t1,上述阀收纳凹部内的,在沿着上述边界的方向中中央部位的壁厚作为t2,则t2/t1≧1.2。优选,t2/t1≧1.3。优选,在设有上述外气导入孔的位置,相对于上述底面的上述周向侧面的倾斜角度大于,相对于上述底面的上述胴部侧侧面的倾斜角度。优选,相对于上述底面的上述周向侧面的倾斜角度为50度以上。优选,上述周向侧面的最高部位比设有上述外气导入孔的位置更靠近上述胴部侧。优选,上述阀收纳凹部呈现大致長方形状。优选,上述阀部件具备轴部、盖部和卡止部。其中,轴部插入上述外气导入孔,盖部设于上述轴部的上述中间空间侧且截面积大于上述轴部,卡止部设于上述轴部的上述外部空间侧且防止上述阀部件进入上述中间空间。
14.根据本发明的第2观点,提供一种层叠剥离容器,具备容器主体和阀部件,其中,容器主体具有外壳与内袋且伴随内置物的减少上述内袋收缩,阀部件调节上述外壳与上述内袋之间的中间空间和上述容器主体的外部空间之间的空气的进出。上述容器主体具备收容部和口部,其中,收容部收容上述内置物,口部从上述收容部排出上述内置物。上述外壳具备外气导入孔,外气导入孔位于上述收容部连通上述中间空间和上述外部空间。上述阀部件具备筒体和移动体,其中,筒体具有使上述外部空间和上述中间空间连通而设的空洞部,
移动体以可移动的方式放置于上述空洞部内。上述筒体具备第1止动部,第1止动部通过卡止上述移动体从而调节上述移动体朝提高述外部空间侧的移动。上述阀部件的构成为,若上述移动体抵接于上述第1止动部则通过上述空洞部的空气的流通被阻断。
15.根据本发明,通过具备筒体(具有阀部件连通外部空间和中间空间而设的空洞部)和移动体(以可移动的方式放置于上述空洞部内),可借由筒体抑制阀部件与内袋的干扰。其结果,排出内置物后,外气通过外气导入孔迅速导入外壳与内袋之间的空间。
16.在下文中将举例说明本发明的各种实施形态。以下实施形态可彼此组合。
17.优选上述阀部件,维持着上述移动体位于比上述筒体的中间空间侧的前端更靠近上述外部空间侧的位置的状态,从上述移动体抵接于上述第1止动部的状态,可移动至上述中间空间侧的方式构成。
18.优选上述筒体进一步具备第2止动部,其卡止上述移动体,调节朝向该移动体的上述中间空间侧的移动。
19.优选上述移动体,即使是卡止于上述第2止动部的状态下,也位于比上述筒体的上述前端更靠近上述外部空间侧的位置的方式构成。
20.优选上述筒体为,在包围上述空洞部的面具有上述第1止动部,相对于上述第1止动部更靠近上述外部空间侧具备上述第2止动部。
21.优选上述移动体具备柱状的轴部,该轴部沿着上述筒体的空洞部移动的方式构成。
22.优选上述移动体设于上述轴部的外部空间侧,且设于上述第2止动部与抵接卡止部与上述轴部的中间空间侧,且具备上述第1止动部和抵接膨径部。
23.优选上述筒体具备筒体轴部和筒体卡止部的同时,具有筒体膨径部。其中,筒体轴部放置于上述外气导入孔内,筒体卡止部设于该筒体轴部的上述外部空间侧,且防止上述筒体进入上述中间空间,筒体膨径部设于上述筒体轴部的上述中间空间侧,且防止上述筒体从上述容器主体的外侧拉出。
24.优选上述筒体轴部朝提高述外部空间侧成为前端变细的形状。
25.并且,优选上述筒体膨径部朝提高述中间空间侧成为前端变细的形状。
26.根据本发明的第3观点,提供一种层叠剥离容器,其具有外壳、内袋及盖帽,其中盖帽排出收容于内袋的内置物。上述内袋伴随收容于上述内袋的内置物的减少而收缩,空气导入孔形成于上述外壳的同时,过滤器以塞住上述空气导入孔的方式设置,由以下式表示选择过滤器的葛尔莱(gurley)秒数、过滤器的面积及盖帽的排出压力的组合,使通过上述过滤器的漏气量成为0.5ml/秒~2.4ml/秒。【数1】
27.根据本发明,通过设置漏气量为0.5ml/秒~2.4ml/秒的过滤器,即使在没有阀的情况下,也可确保内置物的排出性及外壳的复原性。
28.在此,葛尔莱秒数(秒)表示一定体积(此处为100ml)的空气通过过滤器所需的秒数,是表示气体易通过的指标。并且,过滤器的面积是指设于过滤器的空气导入孔的面积,
排出压力是指从盖帽排出内袋的内置物的压力。
29.在下文中将举例说明本发明的各种实施形态。以下实施形态可彼此组合。
30.优选上述过滤器的葛尔莱秒数为2.5秒~10秒。
31.优选上述过滤器为阻断透过了空气的水的疏水性过滤器。
32.优选上述疏水性过滤器是由疎水性微多孔膜和无纺布层叠而成。
33.优选上述疏水性过滤器超声波焊接于上述外壳与上述无纺布接触的方向。
【附图说明】
34.(本发明第1观点的图式简单说明)图1中,图1a为本发明第1观点的第1实施形态的层叠剥离容器1的容器主体3的立体图,图1b为图1a中阀收纳凹部2附近的放大图。图2表示第1实施形态的层叠剥离容器1的容器主体3,图2a为正面图,图2b为右侧面图,图2c为俯视图。图3为将阀部件4安装于第1实施形态的容器主体3的状态下图2a中的a-a剖面图。图4为图3中阀收纳凹部2附近的放大图,图4a表示初期排出前的状态,图4b表示排出后的状态。图5为图2a中的b-b剖面图,图5a表示安装阀部件前的状态,图5b表示安装阀部件后初期排出前的状态,图5c为初期排出后的状态。图6为阀部件4的立体图。图7中,图7a表示胴部侧侧面2b及口部侧侧面2d相对于阀收纳凹部2的底面2a的倾斜角度α1、α3,是与图2a中a-a剖面相对应的状态图,图7b表示设有外气导入孔15的位置上,周向侧面2c相对于阀收纳凹部2的底面2a的倾斜角度α2,是与图2a中c-c剖面相对应的状态图。图8中,图8a为本发明第1观点的第2实施形态的层叠剥离容器1的容器主体3的立体图,图8b为图8a中阀收纳凹部2附近的放大图。图9表示第2实施形态的层叠剥离容器1的容器主体3,图9a为正面图、图9b为右侧面图,图9c为俯视图。图10为图9a中b-b剖面图,图10a表示安装阀部件前的状态,图10b表示安装阀部件后初期排出前的状态,图10c表示初期排出后的状态。
35.(本发明第2观点的图式简单说明)图11表示本发明第2观点的第1实施形态的层叠剥离容器1,图11a为将盖帽23及阀部件4安装于容器主体3的状态的正面图,图11b为只表示容器主体3的正面图。图12中,图12a为图11a中a-a剖面图,图12b为打开图12a中盖帽23的盖帽罩23i状态的剖面图。图13为将图11a的阀部件4安装于外壳12的状态的剖面图。图14为分解了图11a中阀部件4的筒体5和移动体6的剖面图。图15为图14中被分解的阀部件4的立体图。图16同样为被分解的阀部件4,自其它角度看到的立体图。图17为说明图11a的阀部件4的状态的图,图17a表示移动体6抵接于第1止动部5h
从而塞住空洞部5g的状态,图17b表示移动体6与第1止动部5h未抵接从而使中间空间与外部空间连通的状态。图18为表示图11a的阀部件4的变形例的剖面图。图19表示本发明第2观点的第2实施形态的层叠剥离容器1的阀部件4,图19a为筒体5的正面图,图19b为筒体5的底面图,图19c为图19b中a-a剖面图,图19d为图19c中b-b剖面图,图19e为阀部件4的剖面图,图19f表示将阀部件4安装于外壳12的状态的剖面图,图19g表示移动体6抵接于第1止动部5h从而塞住空洞部5g的状态的剖面图。
36.(本发明第3观点的图式简单说明)图20为表示本发明第3观点的一实施形态的层叠剥离容器的结构的立体图。图21为图20表示的层叠剥离容器的概大致剖面图。图22为表示外层及内层的层结构的剖面图。图23为将大气导入孔附近放大表示的主要部分概大致立体图。图24为将大气导入孔附近放大表示的主要部分概大致剖面图。图25为表示疏水性过滤器的一个例子的概大致剖面图。图26中,图26a~图26b为表示形成于疏水性过滤器安装部的肋的例子的主要部分概大致剖面图。图27中,图27a~图27f为表示层叠剥离容器的使用方法的图。
【具体实施方式】
37.以下对本发明的种种实施形态进行说明。为方便说明,基于本发明的第1~第3观点的实施形态进行说明,但也可以是包括具有第1~第3观点中两个以上特征的实施形态。因此,以下表示的基于本发明的第1~第3观点的实施形态可彼此组合。并且,各元件所赋予的符号,在不同观点中存在不同原件赋予同样的号码的情况。
38.(本发明第1观点的第1实施形态)使用图1a~图7b说明本发明第1观点的第1实施形态。如图1a~图4b所示,本实施形态的层叠剥离容器1具备容器主体3和阀部件4。容器主体3具备收容部7和口部9,其中,收容部7收容内置物,口部9具有从收容部7排出内置物的开口部。
39.如图3所示,容器主体3在收容部7及口部9中具备外层11与内层13,借由外层11构成外壳12,借由内层13构成内袋14。通过伴随内置物的减少内层13从外层11剥离,内袋14从外壳12剥离而收缩。还有,收容部7收容内置物前有时进行内层13从外层11剥离的预剥离工程。此时,通过在预剥离后将气体吹入或收容内置物至收容部7内从而使内层13接触外层11。并且,伴随内置物的减少内层13剥离外层11。另一方面,不进行预剥离工程时,排出内置物时内层13从外层11剥离从而自外层11剥离。
40.外层11可以由低密度聚乙烯、线状低密度聚乙烯、高密度聚乙烯、聚丙烯、乙烯丙烯共聚物及其混合物等构成。外层11可以是多层结构。例如,再生层的两侧可以是由原生材料形成的层夹住的结构。在此,再生层为循环再利用容器成形产生的边角料的层。并且,外层11相对于内层13壁厚从而提高复原性。
41.内层13具备evoh层、内面层、粘合层,其中,evoh层设于容器外面侧,内面层设于evoh层的容器内面侧,粘合层设于evoh层与内面层之间。通过设置evoh层可提高气体阻挡
性及从外层11的剥离性。粘合层可省略。
42.evoh层是由乙烯-乙烯醇共聚物(evoh)树脂组成的层,借由乙烯和乙酸乙烯酯共聚物的水解获得。evoh树脂的乙烯含量可以是25~50mol%,考虑到氧气阻挡性的观点,优选32mol%以下。乙烯含量的下限没有特别限定,但由于乙烯含量越少evoh层的柔软性越易降低,因此优选25mol%以上。
43.内面层为接触层叠剥离容器1的内置物的层,可以由低密度聚乙烯、线状低密度聚乙烯、高密度聚乙烯、聚丙烯、乙烯丙烯共聚物、环烯烃聚合物及其混合物等聚烯烃组成,优选由低密度聚乙烯或线状低密度聚乙烯组成。
44.粘合层为具有粘合evoh层和内面层的功能的层,可以是添加了酸变性聚烯烃(例:马来酸酐改性聚乙烯)的物质或乙烯乙酸乙烯酯共聚物(eva),其中酸变性聚烯烃是将羟基导入上述聚烯烃的。粘合层的一个例子为,低密度聚乙烯或线状低密度聚乙烯与酸变性聚乙烯的混合物。
45.口部9设有卡合部9d,卡合部9d可以和具有止回阀的盖帽卡合。盖帽可以是以打栓式安装的,也可以是以螺杆式安装的。
46.如图1~图2所示,收容部7具备柱状(例:圆柱)的胴部19、连接胴部19与口部9的肩部17。胴部19中,朝向收容部的长边方向的截面积(或者外接圆的直径)为大致一定。肩部17可以是截锥体形状(例:截头圆锥体形状),肩部17中,朝向口部9的截面积(或者外接圆的直径)逐渐变小。
47.如图1b所示,肩部17设有阀收纳凹部2。阀收纳凹部2可到达肩部17与胴部19的边界18,进一步设至胴部19。凹部2设为大致长方形状。凹部2设有外气导入孔15。外气导入孔15为仅设在外壳12的貫通孔,连通外壳12与内袋14之间的中间空间21和容器主体3的外部空间s。外气导入孔15安装有阀部件4,可调节中间空间21与外部空间s之间的空气的出入。凹部2为,用收缩膜覆盖收容部7时,避免阀部件4与收缩膜的干扰而设。并且,设置从凹部2至口部9的方向延伸的空气流通沟2e从而避免凹部2不被收缩膜密闭。
48.如图5a所示,阀部件4具备轴部8a、盖部8c和卡止部8b,其中,轴部8a放置于外气导入孔15内,盖部8c设于轴部8a的中间空间21侧且截面积大于轴部8a,卡止部8b设于轴部8a的外部空间s侧且防止阀部件4进入中间空间21。阀部件4借由盖部8c推宽外气导入孔15的同时将盖部8c插入中间空间21内安装于容器主体3。因此,盖部8c的前端优选前端变细的形状。如上所述,阀部件4的安装可通过从容器主体3的外侧将盖部8c推入中间空间21内即可,因此具有良好的生产性。
49.盖部8c构成为压缩外壳12时实质上闭塞外气导入孔15,随着接近轴部8a截面积变小的形状。并且,卡止部8b以外壳12压缩后复原时,空气可导入中间空间21的方式构成。压缩外壳12时,中间空间21内的压力高于外压,中间空间21内的空气从外气导入孔15漏向外部。借由此压力差和空气的流动,盖部8c朝向外气导入孔15移动,盖部8c闭塞外气导入孔15。随着盖部8c接近轴部8a而截面积变小的形状,因此,盖部8c易于匹配外气导入孔15闭塞外气导入孔15。
50.在此状态下进一步压缩外壳12时,中间空间21内的压力变高,其结果为内袋14被压缩从而排出内袋14内的内置物。并且,接触向外壳12的压缩力时,外壳12借由本体的弹性试图复原。此时,盖部8c远离外气导入孔15,解除了外气导入孔15的闭塞,外气导入中间空
间21内。并且,卡止部8b设有流通路8d从而使卡止部8b塞住外气导入孔15,在卡止部8b抵接外壳12的状态下,外气也可通过流通路8d及外气导入孔15导入中间空间21内。
51.如图1b所示,凹部2具备底面2a、胴部侧侧面2b、周向侧面2c和口部侧侧面2d,其中,底面2a设有外气导入孔15,胴部侧侧面2b设于底面2a的胴部19侧,周向侧面2c设于底面2a的周向的两侧,口部侧侧面2d设于底面2a的口部9侧。换句话说,阀收纳凹部2是,底面2a由侧面2b,2c,2d包围而构成的。
52.如图7a所示,侧面2b相对于底面2a的倾斜角度α1为45度以下,优选30度以下,更优选20度以下,进一步优选15度以下。如上所述,由于侧面2b的倾斜角度小,凹部2的底面2a在胴部19侧顺利连接于收容部7的外周表面。根据这种结构,内袋14在胴部19侧不被外壳12约束(没有牵拉),在此部位内袋14易于剥离于外壳12,以此部位为起点内袋14可顺利脱离外壳12。倾斜角度α1的下限没有特别限定,例如,倾斜角度α1过小时,凹部2的上下方向的长度变得过长,倾斜角度α1优选5度以上。倾斜角度α1具体可以是5、10、15、20、25、30、35、40、45度,也可以是在此处举例说明的任何两个数值之间的范围内。
53.还有,凹部2的胴部19侧没有侧面,底面2a可以是直接连接于收容部7的外周表面。这种情况下,和倾斜角度α1小的情况同样地,底面2a顺利连接于收容部7的外周表面。但是,不设置侧面2b将底面2a延长至胴部19侧,使底面2a交叉于胴部19时,底面2a与胴部19在图3中位置20所示的位置交叉而凹部2延伸至位置20,有不优选凹部2的上下方向的长度过长的情况。
54.如图7b所示,设有外气导入孔15的位置中,相对于底面2a的周向侧面2c的倾斜角度α2并没有特别限定,但优选大于倾斜角度α1,优选50度以上,更优选60度以上,进一步优选70度以上。倾斜角度α2的上限并没有特别限定,可以是85度。倾斜角度α2具体可以是50、55、60、65、70、75、80、85度,也可以是在此处举例说明的任何两个数值之间的范围内。
55.如图7a所示,相对于底面2a的口部侧侧面2d的倾斜角度α3并没有特别限定,但优选大于倾斜角度α1,优选50度以上,更优选60度以上,更优选70度以上。倾斜角度α3的上限并没有特别限定,可以是85度。倾斜角度α3具体可以是50、55、60、65、70、75、80、85度,也可以是在此处举例说明的任何两个数值之间的范围内。
56.侧面2c从设有外气导入孔15的位置朝向胴部19侧逐渐升高,在边界18的附近最高,从那开始,进一步朝向胴部19逐渐降低的方式构成。通过吹塑成形形成容器主体3时,侧面2c越高的位置型坯的延伸越大,从而壁厚变薄那么多。
57.沿着边界18的凹部2的相邻部位a的壁厚作为t1,凹部2内的沿着边界18方向的中央部位b的壁厚作为t2时,由于部位a的吹胀比大于部位b的吹胀比,导致壁厚t2大于壁厚t1,优选t2/t1≧1.2。t2/t1优选1.4以上,更优选1.6以上。此时,由于部位a的壁厚充分变薄,内袋14的凹部2的边缘2f易于弯曲,凹部2维持原来的形状内袋14顺利收缩。t2/t1的上限没有特别限定,可以是3。t2/t1具体可以是1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3,也可以是在此处举例说明的任何两个数值之间的范围内。
58.(本发明第1观点的第2实施形态)使用图8a~图10c说明本发明第1观点的第2实施形态。本实施形态类似于第1实施形态,主要不同点为边界18附近的凹部2的形状的不同。以下主要说明不同点。
59.本实施形态如图8b所示,侧面2b附近相比第1实施形态成为膨胀的形状,其结果如图10a~图10c所示,边界18的侧面2c低于第1实施形态且其倾斜角度比第1实施形态放缓了。根据这样的结构,本实施形态中,沿着边界18的凹部2的相邻部位a的壁厚t1、凹部2内沿着边界18方向的中央部位b的壁厚t2几乎相同。换句话说,t2/t1接近于1。因此,部位a的壁厚比第1实施形态更厚,内袋14的凹部2的边缘2f难以弯曲。这种形状的情况下,内袋14收缩时,部位b易于向容器内侧弯曲。并且,部位b向内侧弯曲时,此部位易产生针孔,且内袋14不易于顺利脱离外壳12。如此,t2/t1接近1时易产生上述问题,因此,如第1实施形态优选t2/t1≧1.2。
60.(本发明第2观点的第1实施形态)如图11a~图12b所示,本发明第2观点的第1实施形态的层叠剥离容器1具备容器主体3和阀部件4。容器主体3具备收容部7和口部9,其中,收容部7收容内置物,口部9具有从收容部7排出内置物的开口部9g。本实施形态中,容器主体3的结构类似于上述第1观点的各实施形态。因此,以下主要说明结构与第1观点的各实施形态不同的阀部件4。
61.如图22所示,本实施形态中,内层13具备evoh层13a、内面层13b和粘合层13c,其中,evoh层13a设于容器外面侧,内面层13b设于evoh层13a的容器内面侧,粘合层13c设于evoh层13a与内面层13b之间。容器主体3的内层13的evoh层13a优选含有吸氧剂。通过使evoh层13a含有吸氧剂,可进一步提高evoh层13a的氧气阻挡性。并且,构成内面层13b的树脂的拉伸模量优选为50~300mpa,更优选70~200mpa。因为,拉伸模量在此范围的情况下,内面层13b特别柔软。拉伸模量具体可以是50、100、150、200、250、300mpa,也可以是在此处举例说明的任何两个数值之间的范围内。
62.本实施形态中盖帽23为打栓式,如图12b所示,具备盖帽主体23a和盖帽盖23i。盖帽主体23a与盖帽盖23i通过连接部23j相连接,盖帽盖23i可开闭。盖帽主体23a具备上部23t、排出口23b、筒部23f、卡合部23c、内环23d、流通路23g、环状阀座23r、止回阀23e,其中,排出口23b设于上部23t,筒部23f从上部23t的外周延伸成为圆筒状,卡合部23c沿着筒部23f的内周面而设,内环23d在筒部23f的内侧从上部23t延伸成为圆筒状,流通路23g设于内环23d的内侧且连通于排出口23b,环状阀座23r设于流通路23g从内环23d延伸至内侧。止回阀23e具有阀体23e1和多个弹性片23e2,其中,阀体23e1关闭形成于环状阀座23r中央的排出孔23r1,弹性片23e2从内环23d向半径方向中心延伸的同时弹性支撑阀体23e1。并且,通过收容部7内压力上升而使阀体23e1上升自排出孔23r1,从而打开止回阀23e。卡合部23c为可卡合于口部9的卡合部9d的环状的突起。盖帽23安装于口部9的状态下,收容部7内的内置物通过流通路23g从排出口23b排出。另一方面,由于止回阀23e阻断从排出口23b流入的外气,外气不侵入容器主体3的内袋14内,抑制内置物的变质。在此说明的盖帽23的结构为一个例子,也可采用具有其他构造的止回阀的盖帽23。
63.并且在本实施形态中,如图11a~图11b所示收容部设有由倾斜平面组成的安装阀部件的凹部2a,此凹部2a设有外气导入孔15,外气导入孔15为仅设于外壳12的貫通孔且连通中间空间21与外部空间s。并且,如图11a~图13所示收容部7设有阀部件4,通过将阀部件4安装于外气导入孔15,可调节外壳12与内袋14之间的中间空间21和容器主体3的外部空间s之间的空气的出入。在此,凹部2a是为了避免用收缩膜覆盖收容部7时,阀部件4和收缩膜的干扰(参考图12a)。并且,设置从凹部2a延伸至口部9的方向的空气流通沟2e从而避免收
缩膜密闭凹部2a(参考图11a,图11b)。
64.如图13~图15所示,阀部件4具备筒体5、移动体6,其中,筒体5具有连通外部空间s和中间空间21的空洞部5g,移动体6收容于空洞部5g内且可移动。筒体5及移动体6借由注塑成形等形成,横跨之后说明的第1止动部5h的方式,将移动体6推进空洞部5g内,从而将移动体6放置于空洞部5g内。
65.筒体5如图14所示具有筒体轴部5a、筒体卡止部5b、筒体膨径部5c,其中,筒体轴部5a放置于外气导入孔15内,筒体卡止部5b设于筒体轴部5a的外部空间s侧,筒体膨径部5c设于筒体轴部5a的中间空间21侧。
66.在本实施形态中,筒体轴部5a朝着中间空间21侧成为前端变细的形状。换句话说,筒体轴部5a的外周表面成为锥形面。并且,借由筒体轴部5a的外周表面紧贴外气导入孔15的边缘,筒体5安装于容器主体3(参考图13)。借由此结构,可以减小外气导入孔15的边缘与筒体5之间的间隙,其结果为,压缩容器主体3时,可抑制中间空间21内的空气从外气导入孔15的边缘与筒体5之间的间隙流出。筒体卡止部5b具有比筒体轴部5a的外径更大的外径,其中间空间21侧与外壳12成为抵接卡止面5b1。并且,将筒体5的筒体轴部5a及筒体膨径部5c插入外气导入孔15时,借由此筒体卡止部5b防止筒体5进入中间空间21。筒体膨径部5c的轴方向中央部的外径大于筒体轴部5a的外径,借由筒体膨径部5c防止筒体5从容器主体3的外侧被拔出。在此,筒体5借由筒体轴部5a的外周表面紧贴于外气导入孔15的边缘从而安装于容器主体3,而并非必须有筒体膨径部5c。
67.并且,筒体5的前端如图15所示为平坦面5d,平坦面5d设有连通于空洞部5g的开口部5e,形成了与周向相反的2处缺口5f。根据这种结构,假设即使筒体5的前端与内袋14接触,内袋14不易受损,并且,可抑制空气的流动受阻。
68.筒体5的空洞部5g具有借由筒体轴部5a及筒体膨径部5c的内周面5j1所形成的窄颈部5g1,借由筒体卡止部5b的内周面5j2所形成的宽颈部5g2,如图14所示剖面形状呈现大致t字形状。窄颈部5g1与宽颈部5g2的边界部分设有第1止动部5h,第1止动部5h是将空洞部5g的直径小于窄颈部5g1所形成的环状的突起。此第1止动部5h通过在移动体6从中间空间21侧朝向外部空间s侧移动时卡止移动体6,从而调节移动体6向外部空间s侧的移动。
69.并且,相对于第1止动部5h靠近外部空间s侧的位置设有调节移动体6向中间空间21侧移动的第2止动部5k。第2止动部5k为形成于窄颈部5g1与宽颈部5g2的边界部分的外部空间s侧的环状平面,抵接于之后说明的移动体6的卡止部6b,从而制约向移动体6的中间空间21侧的移动。
70.另一方面,移动体6是与筒体5的空洞部5g形状大致相似的柱状形状的部件,具有轴部6a、设于轴部6a的外部空间s侧的卡止部6b、设于轴部6a的中间空间21侧的膨径部6c。本实施形态中,移动体6呈现可收容其全身的大小的筒体5的空洞部5g。
71.轴部6a设定为其外径稍微小于第1止动部5h的内径,移动体6收容于筒体5的空洞部5g的状态下该移动体6可移动至轴方向。卡止部6b的外径大于轴部6a的外径,其中间空间21侧的外面成为与筒体5的第2止动部5k抵接的卡止面6b1(参考图15)。通过此卡止面6b1,在移动体6收容于筒体5的空洞部5g的状态,可防止移动体6进入中间空间21。卡止部6b的中间空间21侧外面如图15所示设有流通路6b2,卡止部6b的卡止面6b1抵接于筒体的第2止动部5k的状态下,通过流通路6b2,可导入外气至中间空间21内。并且,膨径部6c的轴方向中央
部的外径大于轴部6a的外径,借由膨径部6c的外部空间s侧的斜面6c1抵接于筒体5的第1止动部5h,阻断了通过中间空间21与外部空间s之间的空洞部5g的空气流通,成为闭塞空洞部5g的状态。在此,本实施形态中通过提高筒体5的第1止动部5h及膨径部6c的外部空间s侧的斜面6c1的尺寸精度,可彻底阻断中间空间与外部空间之间的空气流通。
72.在此,空洞部5g的横截面的直径略大于移动体6相对应的截面的直径,如图17a~图17b所示,从膨径部6c抵接于第1止动部5h的状态(参考图17a)成为卡止部6b抵接于第2止动部5k的状态(参考图17b)为止,呈现移动体6可自由移动至轴方向的形状。由空洞部5g的直径所定义的比值(横截面的直径/移动体6相对应的截面)优选1.01~1.2,更优选1.05~1.15。若此值过小,移动体6的顺利移动将受阻,若此值过大,包围空洞部5g的面5j与移动体6之间的间隙变得过大,易导致压缩容器主体3时施加于移动体6的力不充分。
73.筒体5的筒体膨径部5c推宽外气导入孔15的同时,通过将筒体膨径部5c插入中间空间21内,从而将如上结构的阀部件4安装于容器主体3。因此,筒体膨径部5c的前端优选呈现前端变细的形状。这种阀部件4,因只要从容器主体3的外侧将筒体膨径部5c推入中间空间21内即可安装,具有良好的生产性。在此,筒体5的前端设有平坦面5d,将阀部件4推入中间空间21内时,即使阀部件4的前端碰撞内袋14也不易造成内袋14受损。
74.接下来说明使用本实施形态的层叠剥离容器时,阀部件的动作原理。
75.阀部件4如图13所示,从筒体膨径部5c侧插入外气导入孔15内,筒体卡止部5b被压至外壳12的外面的抵接位置时,筒体轴部5a的外周表面紧贴于外气导入孔15的边缘的状态下,维持于外壳12。空气进入中间空间21的状态下压缩外壳12,中间空间21内的空气通过开口部5e进入空洞部5g内,抬起移动体6抵接于第1止动部5h(参考图17a)。移动体6抵接于第1止动部5h时,可阻断通过空洞部5g的空气流动。
76.此状态下进一步压缩外壳12时,中间空间21内的压力升高,其结果为内袋14被压缩从而排出内袋14内的内置物。并且,若接触向外壳12的压缩力,外壳12借由本体的弹性试图复原。随着外壳12的复原导致的中间空间21内的减压,如图17a所示,对于移动体6施加中间空间21方向的力fi。由此,移动体6移动至中间空间21方向抵接于第2止动部5k,呈现如图17b所示的状态。其结果为,外气通过移动体6与内周面5j1,5j2的间隙(流通路6b2及开口口部5e)导入中间空间21从而复原外壳12。
77.在此,本实施形态的阀部件4如图17a~图17b所示成为如下构成:无论是移动体6移向外部空间s侧而膨径部6c抵接于第1止动部5h的状态,还是移向中间空间21侧而卡止部6b抵接于第2止动部5k的状态,阀部件4均维持在移动体6的中间空间21侧的端部6d位于比作为筒体5的前端的平坦面5d更靠近外部空间s侧的位置的状态。通过成为这种结构,内袋14与移动体6的干扰而阻碍移动体6的工作得到抑制,外气可以顺利且正确导入中间空间21。
78.在此,本发明也可通过以下形态实施。
·
上述实施形态中,筒体5的筒体轴部5a呈现朝向中间空间21侧的前端变细的形状,但如图18所示的筒体5,也可以是筒体轴部5a朝向外部空间侧的前端变细的形状。由此,一旦将筒体5安装于外壳12的外气导入孔15后,可构成筒体5不易被拔出的结构。
·
上述实施形态中,虽然移动体6全身收容于筒体5内,但如图18所示,也可使移动体6的卡止部6b位于空洞部5g的外侧的结构。此时,第2止动部5k由筒体5的外部空间s侧的
端面所构成。
·
上述实施形态中,移动体6一直呈现位于比筒体5的平坦面5d,更靠近外部空间s侧的位置的结构,但移动体6移向中间空间21侧而卡止部6b抵接于第2止动部5k的状态中,移动体6的端部6d也可以呈现位于比筒体5的平坦面5d略靠近中间空间21侧的位置的结构。即使是这种情况,借由内袋14的复原力施加于移动体6的容器外侧方向的力和没有筒体5时相比会减小,因此可抑制移动体6的工作被阻碍的情况。
·
上述实施形态中,空洞部5g为堆积了不同直径的圆柱的方式形成的柱形状,移动体6大致和缩小筒体5的形状相似,但只要可以实现和本实施形态同样的功能,也可意识其他形状。
79.(本发明第2观点的第2实施形态)使用图19说明本发明第2观点的第2实施形态的层叠剥离容器。第2实施形态只有阀部件4的结构不同。以下主要说明不同点。
80.本实施形态所涉及到的阀部件4具备筒体5和移动体6,其中,筒体5具有为连通外部空间s与中间空间21而的空洞部5g,移动体6可收容于空洞部5g内且可移动。筒体5及移动体6由注塑成形等形成,以跨越第1止动部5h的方式,借由将移动体6推入空洞部5g内,可将移动体6放置于空洞部5g内。本实施形态中,空洞部5g为大致圆柱形状,移动体6为大致球形,但如果是可以实现和本实施形态相同的功能的形状,也可以是其他形状。空洞部5g的横截面(图19d的剖面)中的直径略大于移动体6相对应的截面的直径,呈现移动体6可向图19c的箭头b方向自由移动的形状。空洞部5g的横截面的直径/移动体6相对应的截面的直径所定义的比值优选1.01~1.2,更优选1.05~1.15。若此值过小,则移动体6的顺利移动受阻,若此值过大,则包围空洞部5g的面5j与移动体6之间的间隙变得过大从而导致压缩容器主体3时施加于移动体6的力变得不充分。
81.筒体5具有筒体轴部5a、筒体卡止部5b、筒体膨径部5c,其中,筒体轴部5a放置于外气导入孔15内,筒体卡止部5b设于筒体轴部5a的外部空间s侧且防止筒体5进入中间空间21,筒体膨径部5c设于筒体轴部5a的中间空间21侧且防止筒体5从容器主体3的外侧拔出。筒体轴部5a呈现朝向中间空间21侧前端变细的形状。借由筒体轴部5a的外周表面紧贴于外气导入孔15的边缘从而将筒体5安装于容器主体3。借由这种结构,可减小外气导入孔15的边缘与筒体5之间的间隙,其结果为,压缩容器主体3时,抑制中间空间21内的空气从外气导入孔15的边缘与筒体5之间的间隙流出。在此,借由筒体轴部5a的外周表面紧贴于外气导入孔15的边缘,从而将筒体5安装于容器主体3,因此,并非必须具有筒体膨径部5c。并且,筒体轴部5a可呈现为朝向容器外侧的前端变细的形状,也可呈现筒体轴部5a的外周形状不沿着轴方向变化的柱状。
82.包围空洞部5g的面5j设有移动体6从中间空间21侧向外部空间s侧移动时卡止移动体6的第1止动部5h。第1止动部5h由环状的突起构成,呈现移动体6抵接于第1止动部5h时,通过空洞部5g的空气流通被阻断。
83.并且,筒体5的前端为平坦面5d,平坦面5d设有连通至空洞部5g的开口部5e。开口部5e具有中央开口部5e1和狭缝部5e2,其中,中央开口部5e1为大致圆形且设于平坦面5d的中央,狭缝部5e2为从中央开口部5e1扩散的放射状。本实施形态中,该狭缝部5e2为本发明的第2止动部。根据这种结构,即使移动体6抵接于空洞部5g的底部的状态下,空气流动也不
受阻。
84.阀部件4如图19所示,从筒体膨径部5c侧插入外气导入孔15内,若筒体卡止部5b推至外壳12外面抵接位置时,筒体轴部5a的外周表面紧贴于外气导入孔15的边缘的状态下,维持于外壳12。空气进入中间空间21的状态下压缩外壳12时,中间空间21内的空气通过开口部5e进入空洞部5g内,抬起移动体6使其抵接于第1止动部5h。当移动体6抵接于第1止动部5h时,通过空洞部5g的空气流通将被阻断。
85.此状态下进一步压缩外壳12时,中间空间21内的压力变高,其结果为,内袋14被压缩,内袋14内的内置物将被排出。并且,若解除向外壳12的压缩力时,外壳12借由本体的弹性试图复原。伴随外壳12的复原而导致的中间空间21内减压,如图19g所示,将对于移动体6施加容器内侧方向的力fi。由此,移动体6移向空洞部5g底,呈现图19f所示的状态,通过移动体6与面5j的间隙及开口部5e,外气导入进中间空间21内。
86.筒体膨径部5c推宽外气导入孔15的同时,将筒体膨径部5c插入中间空间21内,从而可将阀部件4安装于容器主体3。因此,筒体膨径部5c的前端优选呈现前端变细的形状。只要把筒体膨径部5c从容器主体3的外侧推入中间空间21内即可将安装这种阀部件4,因此,具有良好的生产性。在此,由于筒体5的前端设有平坦面5d,将阀部件4推入中间空间21内时,即使阀部件4的前端碰撞内袋14也不易造成内袋14的受损。
87.如上结构的本实施形态的阀部件4,无论是图19f、图19g所示的移动体6移向外部空间s侧抵接于第1止动部5h的状态,还是移向中间空间21侧抵接于作为第2止动部的狭缝部5e2的状态,均维持移动体6的中间空间21侧的端部6d位于比作为筒体5的前端的平坦面5d(参考图19a),更靠近外部空间s侧的位置的状态的结构。由此结构,防止了内袋14与移动体6干扰移动体6的工作的情况,可迅速且正确地向中间空间21导入外气。
88.(本发明第3观点的一实施形态)如图20及图21所示,本发明第3观点的一实施形态的层叠剥离容器1为将容器主体3作为主体,容器主体3具备收容部7和口部9,其中收容部7收容内置物,口部9从收容部7排出内置物。并且,层叠剥离容器1如图11a所示具备安装于口部9的盖帽23,使用层叠剥离容器1时,从盖帽23的排出口23b排出内置物(参考图27a~图27f)。并且,如图21所示,容器主体3在收容部7及口部9具备作为外壳的外层11和作为内袋的内层13,伴随内置物的减少内层13收缩。
89.外层11与内层13作为多层型坯提供于吹塑成形,结合成一体的状态下成形,其使用形态可以是在使用前预先从外层11剥离内层13,填充内置物直至内层13接触外层11。通过挤压内置物,可顺利收缩内层13。或者,内层13接合于外层11的状态、伴随内置物的排出内层13从外层11剥离从而收缩。
90.进一步说明容器主体3的层结构。容器主体3如上所述具备外层11与内层13,外层11为提高复原性,外层11壁厚厚于内层13。
91.外层11可以是由低密度聚乙烯、线状低密度聚乙烯、高密度聚乙烯、聚丙烯、乙烯丙烯共聚物及其混合物组成的。外层11为单层或者多层结构。
92.外层11可包含丙烯和其他单体之间的无规共聚物而形成。由此,可提高作为外壳的外层11的形状复原性
·
透明性
·
耐热性。
93.无规共聚物中丙烯之外的单体的含量小于50mol%,优选5~35mol%。此含量具体
可以是5、10、15、20、25、30mol%,也可以是在此处举例说明的任何两个数值之间的范围内。与丙烯共聚合的单体可以是相比于聚丙烯的均聚物,提高了无规共聚物的耐冲击性耐衝撃性的化合物,优选乙烯。丙烯与乙烯的无规共聚物中,乙烯的含量优选为5~30mol%,具体可以是5、10、15、20、25、30mol%,也可以是在此处举例说明的任何两个数值之间的范围内。无规共聚物的重均分子量优选为10~50万,更优选为10~30万。此重均分子量具体可以是10、15、20、25、30、35、40、45、50万,也可以是在此处举例说明的任何两个数值之间的范围内。
94.并且,无规共聚物的拉伸模量优选400~1600mpa,更优选1000~1600mpa。因为,拉伸模量在此范围时,具有特别优良的形状复原性。拉伸模量具体可以是400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600mpa,也可以是在此处举例说明的任何两个数值之间的范围内。
95.在此,若容器过硬,则导致容器的使用感变差,因此,无规共聚物可以混合线状低密度聚乙烯等柔软材料构成外层11。但是,混合于无规共聚物的材料,优选小于混合物全部的50重量%的方式混合从而不大力阻碍无规共聚物的有效特性。例如,可由无规共聚物与线状低密度聚乙烯以85:15的重量比混合的材料构成外层11。
96.内层13具备evoh层13a、内面层13b和粘合层13c,其中,evoh层13a设于容器外面侧,内面层13b设于evoh层13a的容器内面侧,粘合层13c设于evoh层13a与内面层13b之间。通过设置evoh层13a,可提高气体阻挡性、及从外层11剥离的剥离性。
97.evoh层13a时由乙烯-乙烯醇共聚物(evoh)树脂组成的层,借由乙烯与乙酸乙烯酯共聚物的水解所获得。evoh树脂的乙烯含量可以是25~50mol%,从氧气阻挡性的观点来看,优选32mol%以下。乙烯含量的下限没有特别限定,乙烯含量越少evoh层13a的柔软性越易下降,因此优选25mol%以上。并且,evoh层13a优选含有吸氧剂。通过使evoh层13a含有吸氧剂,可进一步提高evoh层13a的氧气阻挡性。
98.内面层13b是接触于层叠剥离容器1的内置物的层,可以是由低密度聚乙烯、线状低密度聚乙烯、高密度聚乙烯、聚丙烯、乙烯丙烯共聚物及其混合物等聚烯烃组成的,优选由低密度聚乙烯或者线状低密度聚乙烯组成。构成内面层13b的树脂的拉伸模量优选50~300mpa,优选70~200mpa。因为,拉伸模量处于此范围时,内面层13b特别柔软。拉伸模量具体可以是50、100、150、200、250、300mpa,也可以是在此处举例说明的任何两个数值之间的范围内。
99.粘合层13是具有粘结evoh层13a与内面层13b的功能的层,可以是添加了将羟基导入上述聚烯烃的酸变性聚烯烃(例:马来酸酐改性聚乙烯)的,或乙烯乙酸乙烯酯共聚物(eva)。粘合层13c的一个例子为,低密度聚乙烯或者线状低密度聚乙烯,与酸变性聚乙烯的混合物。
100.容器主体3的层结构如上所述,容器主体3中,外螺纹部设于口部9,外螺纹部如图11a所示安装了盖帽23(盖),盖帽23(盖)具有内螺纹。盖帽23内藏未图示的止回阀,可排出内层13内的内置物,但呈现无法使外气进入内层13内的结构。使用具有内环的盖帽,借由内环的外面抵接于口部9的抵接面,可防止内置物的泄露。
101.并且,在收容部7的肩部,凹部2a形成于外层11,外气导入孔15贯穿而设于此。外气导入孔15时仅设于外层11的貫通孔,未到达内层13。并且,通过从这个外气导入孔15导入空
气,作为外壳的外层11与作为内袋的内层13之间形成中间空间21。也就是说,中间空间21与外部空间s是借由这个外气导入孔15互相连通的。
102.本实施形态的层叠剥离容器(层叠剥离容器)中,如图23及图24所示,贴有塞住外气导入孔15的形状的疏水性过滤器f,借由此可防止水从外气导入孔15侵入。
103.层叠剥离容器在使用于食品的容器中,用高温填充内置物的所谓热包装之后,多采用喷水冷却。喷水冷却为,用喷头将水喷洒而冷却容器的方法,但热包装后实施喷水冷却,会导致外层11与内层13之间的负压,有从外气导入孔15吸入水的可能性。
104.上述疏水性过滤器f具有弹水的性质,通过贴这个,可防止水从外气导入孔15的侵入。疏水性过滤器f在借由挤压排出后,为了复原外层,不得不从外气导入孔15导入空气至外层11与内层13之间,需要使用可以使气体通过的过滤器。
105.在此,本发明为了选择适当的疏水性过滤器f,将疏水性过滤器f贴于外气导入孔15的状态下,需考虑通过过滤器f的漏气量。漏气量可假设为和疏水性过滤器f的面积及盖帽的排出压力成比,通过以下式进行计算得出的量。【数1】
106.在此,葛尔莱秒数(秒)为依据jis-l1096的“葛尔莱透气度”所得出的,用特定体积(在此为100ml)的空气通过过滤器所需的秒数来表示。葛尔莱透气度为,特定压力差为基础,用特定体积的空气通过特定面积的过滤器所需的秒数来表示,,其值越小,意味着空气越容易通过。并且,过滤器的面积时指,设置过滤器的外气导入孔的面积(有效面积),排出压力为从盖帽排出内袋的内置物时的压力。
107.并且,本发明中选择(a)过滤器的葛尔莱秒数、(b)过滤器的面积及(c)盖帽的排出压力的组合从而使上述漏气量成为0.5ml/秒~2.4ml/秒。使漏气量位于此范围的值,借由挤压层叠剥离容器1排出少量内置物的性能(以下称为排出性),挤压后外层11复原的性能(复原性)同时变得良好。
108.作为上述(a)~(c)的具体的组合,可以使用过滤器的面积为约28mm2(外气导入孔15的直径为6mm)、排出压力为1.5~2.5kpa的层叠剥离容器1,使用葛尔莱秒数为约4秒的疏水性过滤器f,可使漏气量成为上述值。并且,使用疏水性过滤器f于过滤器的面积为约28mm2、排出压力为1.5~2.5kpa的层叠剥离容器1时,疏水性过滤器f的葛尔莱秒数优选2.5秒~10秒,更优选3秒~7秒,进一步优选3.5秒~4.5秒。这个葛尔莱秒数具体可以是2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10秒,也可以是在此处举例说明的任何两个数值之间的范围内。
109.进一步,使用具有排出压力小于1.5kpa的止回阀的盖帽时,可使用葛尔莱秒数小于上述的疏水性过滤器f,可以使葛尔莱秒数成为1.0秒~2.5秒。
110.作为这种疏水性过滤器f,如图25所示,可使用一种透气膜,其具有疎水性的氟树脂微多孔膜(ptfe;聚四氟乙烯)f1和pet无纺布f2的2层结构。这2层结构的疏水性过滤器f的厚度为约2mm。
111.如图25所示,疏水性过滤器f中,通过使无纺布f2成为微多孔膜f1的后盾,进行补强。
112.疏水性过滤器f可通过粘接或热焊接安装于形成层叠剥离容器的外气导入孔15的部分。例如在热焊接,构成层叠剥离容器的外层11有可能融化,因此不易适用。并且,在高频焊接,需要作为热源的金属膜,还是不易适用于疏水性过滤器f的安装。
113.从这些观点来看,疏水性过滤器f优选通过超声波焊接安装于层叠剥离容器。超声波焊接中,将号角抵接于疏水性过滤器f的背面,通过施加超声波振动和加压力,可达到瞬时焊接。
114.在此,疏水性过滤器f中,优选将无纺布f2侧作为粘贴面,使外层11和无纺布f2接触的方式粘贴。这是因为,通过超声波融化的树脂浸透于无纺布f2,从而提高焊接强度。
115.在此,上述超声波焊接时,层叠剥离容器的焊接部因柔软而易凹陷,有不易均等得抵接号角的情况。这种情况下,将气体吹入层叠剥离容器内,通过施加内压从而维持形状,可顺利进行号角的抵接及超声波焊接。
116.并且,超声波焊接时,优选在层叠剥离容器(外层11)的安装部分形成肋。如图26a~图26b所示,在外层11形成肋r,超声波焊接疏水性过滤器f。肋r为,例如安装圆形的疏水性过滤器f时,可在外气导入孔15的周围,形成小于疏水性过滤器f的直径的圆形即可。肋r的高度优选0.15mm以上,可以优选0.25mm程度的。通过设置肋r,做能源主管的功能,可达到稳定的超声波焊接。在此,肋的剖面优选如图26a所示的三角形状,或者,可以是如图26b所示的半圆形状。这些形状为朝向肋的根本截面积逐渐变宽的形状。
117.进一步,超声波焊接疏水性过滤器f时,若内层13接触外层11,则有因超声波振动导致内层13开孔的可能性。因此,超声波焊接时,在疏水性过滤器f的安装部附近,优选内层13脱离外层11。
118.接下来,说明使用层叠剥离容器1时的动作原理。
119.如图27a~c所示,填充了内置物的产品在倾斜的状态,握住外层11的侧面进行压缩排出内置物。开始使用时,内层13与外层11之间实质上为没有间隙的状态,施加于外层11的压缩力直接成为内层13的压缩力,内层13被压缩而排出内置物。
120.盖帽23内藏未图示的止回阀,可排出内层13内的内置物,但无法使外气进入内层13内。因此,排出内置物后,若除去施加于外层11的压缩力,外层11由自身的复原力回复原来的形状,但内层13收缩而只有层11膨胀。并且,如图27d所示,内层13与外层11之间的中间空间21内呈现减压的状态,通过形成于外层11的外气导入孔15将外气导入中间空间21内。在此,外气导入孔15安装有疏水性过滤器f,但本实施形态的疏水性过滤器f呈现通过外气与中间空间21内的压力差使外气充分通过的透气度,可良好地复原外层11。
121.接下来,如图27e所示,再次握住外层11的侧面而压缩时,疏水性过滤器f压缩外层11时,呈现中间空间21内的空气不会立刻流出的透气度,导致中间空间21内的压力升高,施加于外层11的压缩力通过中间空间21传达至内层13,借由此力压缩内层13从而排出内置物。
122.接下来,如图27f所示,排出内置物后若解除向外层11施加的压缩力,外层11从外气导入孔15导入外气至中间空间21,通过自身的复原力复原原来的形状。此时,疏水性过滤器f呈现适当的透气度,可良好地复原外层11。
123.以上说明了应用了本发明的实施形态,但本发明不限于此。在不脱离本发明的主旨的范围内,可以进行各种修改。
【实施例】
124.以下,例举试验例更详细说明本发明。但是本发明不完全限于这些试验例。在此,在以下试验,层叠剥离容器1使用从盖帽23的排出口23b排出的内置物的排出压力为1.5~2.5kpa,并且,过滤器f的有效面积为约28mm2(外气导入孔15的直径为6mm)的层叠剥离容器。排出压力可通过在内层13内固定压力记录仪来测量。试验中,在外气导入孔15安装具有以下4个葛尔莱秒数的疏水性过滤器f(透气膜),对排出性和复原性这2个项目进行评价。(样品1)1.5秒(样品2)4秒(样品3)12秒(样品4)35秒
125.<排出性试验>排出性试验为评价少量排出性能的试验,对以1ml/1秒排出内置物时能够排出进行了试验。
126.表1表示试验结果。对4种透气度的瓶各进行了2次试验,按照以下标准进行了评价。

:可不间断地排出。
×
:不能成束地排出。
127.<复原性试验>复原性试验为评价挤压后的容器(外层11)的复原性能的试验,各排出15ml的内置物(水)后测定了容器复原为止的时间。
128.表1表示试验结果。对4种透气度的瓶各进行了3次试验,按照以下标准进行了评价。

:平均在30秒之内复原

:平均在30秒~60秒复原
×
:平均经过60秒以上也没能复原【表1】 样品1样品2样品3样品4葛尔莱秒数1.5秒4秒12秒35秒排出性
×○○○
复原性
○○△×
129.如表1的试验结果所示,透气度越小排出性越良好,透气度越大复原性越良好。并且,从以上的排出性试验和复原性试验的结果,已被证实,使用层叠剥离容器1,其从盖帽23的排出扣23b排出的内置物的排出压力为1.5~2.5kpa、过滤器f的有效面积为约28mm2(外气导入孔15的直径为6mm)时,若疏水性过滤器f的葛尔莱秒数为2.5~20秒,则排出性及复原性均优良,若为2.5~10秒,则排出性及复原性均更优良。
130.并且,虽然省略详细说明,使用具有排出压力小于1.5kpa这样的止回阀的盖帽23时,即使使用葛尔莱秒数为1.5~2.5秒的过滤器f,也可获得具有适当的排出性及复原性的层叠剥离容器1。【符号说明】
131.(本发明第1观点的符号说明)1:层叠剥离容器、2:阀收纳凹部、2a:底面、2b:胴部侧侧面、2c:周向侧面、2d:口部侧侧面、2e:空气流通沟、2f:边缘、3:容器主体、4:阀部件、7:收容部、8a:轴部、8b:卡止部、8c:盖部、8d:流通路、9:口部、9d:卡合部、11:外层、12:外壳、13:内层、14:内袋、15:外气导入孔、17:肩部、18:边界、19:胴部、21:中间空间、s:外部空间
132.(本发明第2观点的符号说明)1:层叠剥离容器、3:容器主体、4:阀部件、5:筒体、5a:筒体轴部、5b:筒体卡止部、5c:筒体膨径部、5d:平坦面(前端)、5e:開口部、5g:空洞部、5h:第1止动部、5k:第2止动部、6:移动体、6d:端部、7:收容部、9:口部、12:外壳、14:内袋、15:外气导入孔、21:中间空间、23:盖帽、s:外部空间
133.(本发明第3观点的符号说明)1:层叠剥离容器、3:容器主体、7:收容部、9:口部、11:外层、12:内层、15:外气导入孔、23:盖帽、f:疏水性过滤器
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献