一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于毫米波雷达的振动检测方法及终端

2022-07-31 05:03:40 来源:中国专利 TAG:


1.本发明属于毫米波雷达无源感知和工业互联网技术领域,具体涉及一种基于毫米波雷达的振动检测方法及终端。


背景技术:

2.振动是工业场景中最普遍的一个现象之一。由于设备损伤或异常会直接导致工业设备的振动特性产生异常,因此,工业设备的振动通常可以明确地反映出设备的内部工作状态。然而,由于实际工业场景的复杂性,仅仅依靠工作人员使用听声、测振等方式进行定期巡查很难及时发现机器故障,酿成重大生产事故。因此,我们需要智能的自动机器振动检测系统,在机器产生异常振动时及时对工作人员进行通知与预警。
3.当前主要的机器振动检测方案主要包括如下几种:1)基于传感器的方法,这种方法主要通过在机器上安装专业的传感器来对机器的振动进行测量,其中受到最广泛应用的为压电陶瓷振动传感器;这种方式的主要缺点是只能对单个设备进行感知,并且部署需要额外的供电以及传输线路,是一种侵入式的感知方式;2)基于光学设备的方法,这种方法通过激光测振仪来对振动进行感知,由于激光的特性,这种方式有着极高的位移测量精度;但是,在实际部署中需要光路直射、无遮挡,这在复杂的工厂环境中近乎不可能实现,并且高精度的激光传感器通常价格不菲,限制了其大规模应用。
4.因此,基于上述考虑,有必要提出一种新的振动检测方法,以实现无侵入、高精度、低成本的即时机器振动检测。


技术实现要素:

5.针对于上述现有技术的不足,本发明的目的在于提供一种基于毫米波雷达的振动检测方法及终端,以解决现有的机器振动检测技术中仅靠工作人员的定期巡查,很难及时发现意外情况并进行处理的问题;本发明采用非侵入式感知技术,无需对机器进行改造,通过毫米波无线射频信号来实现振动感知。
6.为达到上述目的,本发明采用的技术方案如下:
7.本发明的一种基于毫米波雷达的振动检测方法,步骤如下:
8.1)对振动物体进行定位与辨别:通过距离傅里叶变换对物体进行粗粒度的定位,再通过chirp-z变换对粗粒度定位后的物体进行细粒度的定位,并使用到达角度测量方法识别出的若干个物体在二维平面上的位置,通过多普勒傅里叶变换对所述物体进行筛选,选取出测振目标物体集合,针对集合中的物体,获取原始信号序列;
9.2)针对步骤1)中获取的原始信号序列,在iq(inphase-quadrature)平面上采取曲线分段拟合的处理方法,以静止点为曲线分界点将原始信号序列在iq平面上分为两段,分别进行拟合,还原正负向的位移,获得原始振动信号;
10.3)使用带有跳跃连接层的卷积网络对步骤2)中获取的原始振动信号的时间-频率图进行处理,去除加性噪声与乘性噪声,获得增强振动信号;
11.4)对步骤3)中获得的增强振动信号进行判断,若发生异常,则发出处理通知。
12.进一步地,所述步骤1)中的粗粒度的定位具体包括:通过毫米波雷达对环境中的物体进行探测,毫米波雷达的发射信号s
tx
(t)和接收信号s
rx
(t)的表示如下:
13.s
tx
(t)=exp[j(2πfct πkt2)]
[0014]srx
(t)=αs
tx
[t-2r(t)/c]
[0015]
发射信号s
tx
(t)和接收信号s
rx
(t)经过板载混频器处理后得到中频信号s(t),公式如下:
[0016][0017]
式中,α为衰减常数,fc为连续调频波的起始频率,k为连续调频波的调制斜率,r(t)为物体与雷达的距离,δt为信号传播时间,c为光速,j为虚数单位,代表对信号s
tx
(t)的取共轭操作;
[0018]
对中频信号s(t)进行距离傅里叶变换,如下:
[0019][0020]
式中,xk表示傅里叶变换频谱第k个元素,xn表示中频信号s(t)第n个元素,n表示傅里叶变换的点数;
[0021]
通过距离傅里叶变换,频谱上的每一个频率峰值都对应环境中一个物体的真实位置,通过距离傅里叶变换来完成对物体的粗粒度定位。
[0022]
进一步地,所述步骤1)中细粒度的定位具体包括:物体的真实位置所对应的理想频率f
ideal
与距离傅里叶频谱图上峰值频率f
fft
有以下关系:得到f
ideal
与f
fft
之间存在一个频率偏差通过对chirp-z变换的参数进行设置使其在偏差范围内做细化的m点的变换,使频率偏差缩小到由此通过频率与距离的关系,得到物体与毫米波雷达的距离d,完成物体的细粒度的定位。
[0023]
进一步地,所述步骤1)中获取的中频信号s(t)为毫米波雷达n个天线接收的信号集合,即s(t)=[s1(t),s2(t),s3(t),
……
sn(t)],对于一个时刻t,通过n个天线的相位差计算到达角度θ,配合距离d,在二维平面上确定一个物体mi=[di,θi]。
[0024]
进一步地,所述步骤1)具体还包括:经过距离d、角度θ计算,得到若干个物体的集合m=[m1,m1,m1,
……
,mn],针对集合中的物体,获取其原始信号序列,以3~5秒为一个时间窗口进行多普勒傅里叶变换,得到距离-多普勒速度频谱图,并通过如下的方式滤除静止物体,筛选测振目标物体,方式如下:
[0025]
连续若干个时间窗口内的多普勒速度绝对值大于阈值,并且方差不超过10个窗口多普勒速度平均值的一半;
[0026]
连续若干个时间窗口内,多普勒速度均在v以及-v两个峰值附近;
[0027]
对满足以上条件的物体,作为振动感知目标,得到测振目标物体集合对于集合中的每一个物体,获取原始信号序列s


[0028]
进一步地,所述步骤2)具体包括:针对步骤1)中的所获得的物体的原始信号序列s

,在iq平面上进行处理还原原始振动信号,具体如下:
[0029]
21)通过式s
center
=s
′‑
mean(s

)完成信号的中心化,将静止点p
static
位置移动到原点-o;其中,s
center
为中心化后的原始信号序列,mean(s

)为原始信号序列的均值;
[0030]
22)初始化两采样点集合c
far
,c
near
,集合c
far
代表远离雷达方向采样点的集合,c
near
代表靠近雷达方向采样点的集合;在中心化后的原始信号序列s
center
上取有着正向多普勒速度且远离原点的采样点放入集合c
far
中,对序列s
center
中的点p进行遍历,当使得时(一般设),将点p放入集合c
far
中;不断重复以上过程,直至无点可加入集合c
far
中,将所剩点放入集合c
near
中;由此获得静止点两侧采样点的集合c
far
,c
near
,各集合都在iq平面上体现为一段圆弧;
[0031]
23)通过最小二乘法分别对两段圆弧进行拟合,经过拟合得到两个对应的圆心o
far
,o
near
;对振动进行还原,通过下式还原出的原始振动信号v:
[0032][0033]
式中,v(t)为物体在t时刻的原始振动信息,λ为毫米波雷达的中心波长,∠o
near
op(t),∠o
far
op(t)分别为t时刻两个集合中采样点与静止点相对各自圆心的夹角。
[0034]
进一步地,所述步骤3)具体包括:针对步骤2)中所获取的原始振动信号v,使用基于深度学习的模型进行强化,该模型使用多层卷积-反卷积网络对信息进行抽取且在相应的位置设置了跳跃连接层,其中层级之间的关系表示为:
[0035][0036][0037]
其中,为上一层输出,当前层的输入,为当前层网络的参数,为当前层的偏置,f为所选取的激活函数,为卷积层的输出,x
i-relu
为relu层的输出;该模型选取交叉熵作为损失函数;网络训练完毕后,将待增强的原始振动信号v的时频图输入到网络中,得到增强后的时频图,再通过逆短时傅里叶变换恢复为增强振动信号
[0038]
进一步地,所述步骤4)具体包括:
[0039]
41)以一定时间为一个时间窗口,计算步骤3)中增强振动信号的振动幅度amp与振动频率fre;
[0040]
42)以若干个时间窗口为一帧,计算振动幅度的平均值μ
amp
与方差σ
amp
、振动频率的平均值μ
fre
和方差σ
fre

[0041]
43)对于每一个时间窗口,与其前一帧做对比,当amp》μ
amp

amp
或fre》μ
fre

fre
时,视为出现异常,发出通知。
[0042]
进一步地,所述步骤41)具体包括:针对步骤3)中获得的增强振动信号通过下式计算振动幅度amp:
[0043]
[0044]
通过对增强振动信号进行傅里叶变换,频谱上的强度最大的峰值频率即为物体振动频率fre。
[0045]
一种振动检测终端,其特征在于,包括:
[0046]
一个或多个处理器;
[0047]
存储器,用于存储一个或多个程序;
[0048]
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现所述基于毫米波雷达的振动检测方法。
[0049]
本发明的有益效果:
[0050]
1、高精度实时振动检测:对工业环境中的目标进行高精度、实时的振动检测,精度可达到毫米级别。
[0051]
2、意外事件监控:检测到振动异常时,可以向医护人员发送相应的预警。
[0052]
3、成本低廉:使用毫米波雷达完成感知,成本低廉,便于大量部署。
[0053]
4、无接触非侵入感知:采用无接触非侵入感知技术,可以同时检测多个目标,不需要对机器进行修改。
附图说明
[0054]
图1为本发明的方法流程图;
[0055]
图2为毫米波雷达的信号传播示意图;
[0056]
图3为振动信号强化网络示意图;
[0057]
图4为iq平面上的信号分割方法;
[0058]
图5为双重圆拟合示意图。
具体实施方式
[0059]
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
[0060]
参照图1所示,本发明的一种基于毫米波雷达的振动检测方法,步骤如下:
[0061]
1)对振动物体进行定位与辨别:通过距离傅里叶变换对物体进行粗粒度的定位,再通过chirp-z变换对粗粒度定位后的物体进行细粒度的定位,并使用到达角度测量方法识别出的若干个物体在二维平面上的位置,通过多普勒傅里叶变换对所述物体进行筛选,选取出测振目标物体集合,针对集合中的物体,获取原始信号序列;
[0062]
其中,粗粒度的定位具体包括:通过毫米波雷达对环境中的物体进行探测,毫米波雷达的发射信号s
tx
(t)和接收信号s
rx
(t)的表示如下:
[0063]stx
(t)=exp[j(2πfct πkt2)]
[0064]srx
(t)=αs
tx
[t-2r(t)/c]
[0065]
发射信号s
tx
(t)和接收信号s
rx
(t)经过板载混频器处理后得到中频信号s(t),公式如下:
[0066][0067]
式中,α为衰减常数,fc为连续调频波的起始频率,k为连续调频波的调制斜率,r
多普勒速度频谱图,并通过如下的方式滤除静止物体,筛选测振目标物体,方式如下:
[0082]
连续10个时间窗口内的多普勒速度绝对值大于阈值,并且方差不超过10个窗口多普勒速度平均值的一半;
[0083]
连续10个时间窗口内,多普勒速度均在v以及-v两个峰值附近;
[0084]
对满足以上条件的物体,作为振动感知目标,得到测振目标物体集合对于集合中的每一个物体,获取原始信号序列s


[0085]
2)针对步骤1)中获取的原始信号序列,在iq(inphase-quadrature)平面上采取曲线分段拟合的处理方法,以静止点为曲线分界点将原始信号序列在iq平面上分为两段,分别进行拟合,还原正负向的位移,获得原始振动信号;
[0086]
针对步骤1)中的所获得的物体的原始信号序列s

,在iq平面上进行处理还原原始振动信号,具体如下:
[0087]
21)通过式s
center
=s
′‑
mean(s

)完成信号的中心化,将静止点p
static
位置移动到原点-o;其中,s
center
为中心化后的原始信号序列,mean(s

)为原始信号序列的均值;图5中展示了在iq平面上中心化的信号;
[0088]
22)参照图4所示,初始化两采样点集合c
far
,c
near
,集合c
far
代表远离雷达方向采样点的集合,c
near
代表靠近雷达方向采样点的集合;在中心化后的原始信号序列s
center
上取有着正向多普勒速度且远离原点的采样点放入集合c
far
中,对序列s
center
中的点p进行遍历,当使得时(一般设),将点p放入集合c
far
中;不断重复以上过程,直至无点可加入集合c
far
中,将所剩点放入集合c
near
中;由此获得静止点两侧采样点的集合c
far
,c
near
,各集合都在iq平面上体现为一段圆弧;
[0089]
23)通过最小二乘法分别对两段圆弧进行拟合,拟合方式的误差平方的优化目标s可以表示为:
[0090][0091]
式中,(xi,yi)为iq平面上静止点两侧圆弧上的特征点坐标,i=1,2,

,n,n为特征点数量,(x0,y0)为待拟合的圆心,r为待拟合半径;经过拟合得到两个对应的圆心o
far
,o
near
;对振动进行还原,通过下式还原出的原始振动信号v:
[0092][0093]
式中,v(t)为物体在t时刻的原始振动信息,λ为毫米波雷达的中心波长,∠o
near
op(t),∠o
far
op(t)分别为t时刻两个集合中采样点与静止点相对各自圆心的夹角。
[0094]
3)使用带有跳跃连接层的卷积网络对步骤2)中获取的原始振动信号的时间-频率图进行处理,去除加性噪声与乘性噪声,获得增强振动信号;具体为:
[0095]
针对步骤2)中所获取的原始振动信号v,对每1秒的信号都经过短时傅里叶变换,转换为128x128的时频图,使用基于深度学习的模型进行强化,如图3所示,该模型使用多层卷积-反卷积网络对信息进行抽取且在相应的位置设置了跳跃连接层,其中层级之间的关系表示为:
[0096][0097][0098]
其中,为上一层输出,当前层的输入,为当前层网络的参数,为当前层的偏置,f为所选取的激活函数,为卷积层的输出,x
i-relu
为relu层的输出;该模型选取交叉熵作为损失函数;网络训练完毕后,将待增强的原始振动信号v的时频图输入到网络中,得到增强后的时频图,再通过逆短时傅里叶变换恢复为增强振动信号
[0099]
4)对步骤3)中获得的增强振动信号进行判断,若发生异常,则发出处理通知;
[0100]
41)以一定时间为一个时间窗口,计算步骤3)中增强振动信号的振动幅度amp与振动频率fre;
[0101]
42)以若干个时间窗口为一帧,计算振动幅度的平均值μ
amp
与方差σ
amp
、振动频率的平均值μ
fre
和方差σ
fre

[0102]
43)对于每一个时间窗口,与其前一帧做对比,当amp》μ
amp

amp
或fre》μ
fre

fre
时,视为出现异常,发出通知;
[0103]
针对步骤3)中获得的增强振动信号通过下式计算振动幅度amp:
[0104][0105]
通过对增强振动信号进行傅里叶变换,频谱上的强度最大的峰值频率即为物体振动频率fre。
[0106]
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献