一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种适应入口含气率大范围变化的双级管式气液分离器

2022-06-05 02:33:20 来源:中国专利 TAG:

1.本发明涉及油气田油气集输处理工艺和设备技术领域,尤其是涉及一种适应入口含气率大范围变化的双级管式气液分离器。


背景技术:

2.在石油工业上游领域,油井产出物中难免含有一定的伴生气,而且其含量往往随着油气藏地质条件、油井开采年限以及开采压力的变化而改变,部分油田全生命周期内的含气量甚至会在10%~90%范围内变化。油气集输处理环节的重要任务就是通过有效实施气液分离、油水分离等过程以得到合乎相应要求的天然气、原油和油田采出水,其中气液分离过程通常放置在油水分离之前进行。因此,如何有效应对大含气量变化范围的气液分离问题对于油田生产实际意义重大。
3.目前油田普遍采用容积式分离器,主要依靠重力沉降作用进行气液分离,如立式气液两相分离器、卧式气液两相分离器、立式油气水三相分离器、卧式油气水三相分离器等。尽管容积式分离器技术相对较为成熟、对工况适应能力强,但存在占地面积大、分离效率低等缺点,使得其难以适应边际断块小油田和深水油田开发。例如,容积式分离器进行分离所需停留时间较长,设备体积、设备干重和湿重较大,对平台上部荷重和甲板面积的需求居高不下,直接导致深水浮式平台的设计建造成本急剧增加。这时若采用结构紧凑、分离效率高的管式分离器来替代容积式分离器,显然可以有效降低平台上部荷重和甲板面积需求,进而降低油田开发成本。另外,随着水下生产系统相关技术的不断发展,实施油井产出物海底分离处理的固有优点逐渐得到广泛认可,但容积式分离器直径较大且承受外压能力较弱,在深水尤其是超深水场合应用时的技术经济性较差,管式气液分离器则因其结构紧凑、承受外压能力强、水下安装方便等特点而颇具竞争优势。
4.管式气液分离器按照工作时的放置方式可分为水平式和竖直式。对于水平管式气液分离器而言,按照气液混合物在分离器内部的流动方向,可分为顺流式和逆流式气液分离器。水平顺流式气液分离器中,分离后的气相和液相方向相同,如专利zl200680023429.6中提到的“用于分离固体、液体和/或气体混合物的分离器”,通过设置旋流元件,使气液混合物流动方向发生偏转并分离为重组分和轻组分,重组分和轻组分分别通过设置的出口排出,实现气液同向排出分离器。水平逆流式气液分离器中,分离后的气相和液相方向相反,如专利zl201380052328.1中提到的“将液流旋流分离成气相和液相的设备以及配有该设备的容器”,通过设置在涡旋部件前端的气相出口和设置在涡旋部件后端的液相出口,使得分离后的气相和液相异向流出分离器。
5.竖直式分离器一般均为逆流式分离器,如专利zl200920032330.3中提到的“管柱式气液旋流分离器”,利用切向入口产生旋流,实现气液两相的分离。尽管上述提到的管式分离器能够实现气相和液相的分离,但是难以适应入口工况的变化,尤其当入口含气率(气液比)变化幅度较大时,分离性能的表现往往难以令人满意。实际上对于油气田开发而言,随着开采年限的逐渐增加,地层压力的变化必然导致油井采出液的含气率发生变化。显然,
管式气液分离器只有能够较好地适应入口含气率的变化,才能在未来替代容积式气液分离器。令人遗憾的是,目前只有专利zl201080069306.2提到的“高效分相器”能够适应入口含气率在一定范围内变化。该专利中设置了气核稳定装置,使分离器在处理入口含气率变化的工况时,气核能够保持稳定,提高分离效率。但该专利所述高效分相器能够应对的入口含气率变化范围十分有限。


技术实现要素:

6.本发明的目的在于提供一种适应入口含气率大范围变化的双级管式气液分离器,具有适应入口含气率大范围变化、分离效率高、结构紧凑以及多次分离的特点。本发明提供的诸多技术方案中的优选技术方案所能产生的诸多技术效果详见下文阐述。
7.为实现上述目的,本发明提供了以下技术方案:本发明提供的一种适应入口含气率大范围变化的双级管式气液分离器,包括一级水平分离段和二级竖直分离段,其中,所述一级水平分离段和所述二级竖直分离段相连接,所述二级竖直分离段的底端和顶端分别设置出液管和二级出气管;所述一级水平分离段内依次设置有旋流元件和气相出口管,所述气相出口管与所述一级水平分离段内的一级出气管相连通;所述气相出口管上存在界面流层处理结构,所述气相出口管与所述一级水平分离段的内侧面之间形成液相通道。
8.进一步地,所述气相出口管存在锥形外表面,沿远离所述旋流元件的方向所述气相出口管的锥形外表面直径逐渐增大,所述锥形外表面形成所述界面流层处理结构;所述锥形外表面的锥度范围为3
°
~5
°

9.进一步地,所述气相出口管包括分层管段,所述分层管段的管壁上形成夹层腔,所述分层管段底部区域的外侧面上设置与所述夹层腔相连通的流液口且所述流液口位于所述分层管段远离所述旋流元件的一侧,所述分层管段顶部区域的内侧面上设置与所述夹层腔相连通的流气口且所述流气口位于所述分层管段远离所述旋流元件的一侧,所述夹层腔、所述流液口以及所述流气口形成所述界面流层处理结构。
10.进一步地,所述分层管段包括锥形外层管和锥形内层管,所述锥形内层管套设在所述锥形外层管内且两者之间形成所述夹层腔,所述锥形外层管和所述锥形内层管之间设置环形的连接环且所述锥形外层管和锥形内层管通过所述连接环相连接,所述连接环位于远离所述旋流元件的一侧;所述锥形外层管的管壁上开设环形槽以形成所述夹层腔,所述锥形外层管的内层管壁上分布若干连通孔,所述锥形外层管的外层管壁上设置所述流液口,位于所述连接环靠近所述二级竖直分离段一侧的连通孔形成所述流气口。
11.进一步地,所述连通孔为矩形孔,所述连通孔沿所述内层管壁的周向分布,且沿所述内层管壁的轴向方向分布多圈所述连通孔。
12.进一步地,所述分层管段还包阻挡板,所述阻挡板设置在所述锥形外层管和所述锥形内层管形成的所述夹层腔以及所述锥形外层管上形成的所述夹层腔内,所述阻挡板位于所述分层管段靠近其直径大的一侧且所述阻挡板沿所述分层管段的轴线方向延伸,所述阻挡板用以沿所述分层管段的周向方向分割两层所述夹层腔;所述阻挡板为两个,两个所述阻挡板沿所述分层管段的周向方向分布,沿所述分层管段的周向方向两个所述阻挡板之间形成的位于上方的空间对应所述流气口,沿所述分层管段的周向方向两个所述阻挡板之
间形成的位于下方的空间对应所述流液口。
13.进一步地,所述气相出口管还包括柱形管段,所述柱形管段设置在所述分层管段直径大的一侧,所述柱形管段与所述分层管段相连接,所述柱形管段与所述一级出气管相连接,所述柱形管段上设置反向叶片,所述反向叶片与所述旋流元件上的叶片旋向相反。
14.进一步地,所述二级竖直分离段包括外筒和内筒,所述外筒的底端和顶端分别设置所述出液管和所述二级出气管,所述内筒设置在所述外筒内且两者之间形成环形空间,所述一级水平分离段插入所述外筒与所述内筒相连接。
15.进一步地,所述一级水平分离段包括主体段和倾斜段,所述倾斜段与所述主体段相连接,所述倾斜段与所述内筒相切连接,所述倾斜段远离所述主体段的一侧向下倾斜。
16.进一步地,所述一级水平分离段包括入口混合段、分离段、液体出口段以及倾斜入口段,所述入口混合段、所述分离段、所述液体出口段以及所述倾斜入口段依次可拆卸连接,所述倾斜入口段与所述二级竖直分离段相连接,所述旋流元件设置在所述入口混合段和所述分离段,所述液体出口段的侧面上突出有引出外管,所述一级出气管位于所述引出外管内。
17.针对目前管式气液分离器难以适应入口含气率大范围变化的不足,本发明基于分级、分层处理的思想理念,提升管式气液分离器对入口含气率大范围变化工况的适应能力。具体结构设计上,采用“水平段 竖直段”这种两级串联运行的分离方式,充分利用离心分离和重力沉降分离作用拓展对入口含气率的适应范围;另外,在本发明的水平段(一级水平分离段),通过界面流层处理结构对不稳定的气液界面流层进行特殊处理,以保证入口含气率变化时具有较高的分离效率。
18.本发明优选技术方案至少还可以产生如下技术效果:气相出口管(一级水平分离段内)前半部分设置了锥状环形分层结构,这种设计有两个优点:一是当入口含气率变化时,气核或气液界面往往随着含气率变化而波动,而锥状环形分层结构通过缓冲作用(随着入口含气率的增加,气核直径增加,气核的尾部沿着锥面逐渐爬升,从而实现对入口含气率小范围变化的适应),可有效降低分离过程中工况波动对分离过程的影响;二是气液界面的波动往往导致分离效果不佳,而本设计中锥状环形分层结构可以将气液界面处的流体引入锥状环形空间,在环形空间中实现气液的进一步分离,达到提高分离效果的目的。气体出口管后半部分上部设置有反向旋流叶片,反向叶片能够把旋转流转化为无旋流动,保证进入二级竖直分离段时,气液混合物处于比较理想的状态。
19.二级竖直分离段为内外两层筒状结构,这种设计的优点在于能有效抑制分离过程中液膜的向上爬升和气核的向下延伸。当流体在内筒中进行分离时,液膜层爬升至内筒上边缘后受重力作用沿着内筒外壁向下流动,这样就防止液膜上升到气相出口影响分离效果。同样地,当气核延伸到内筒下边缘后,由于流通截面积的突然增加,气核受阻力的作用,在长度方向难以向下延伸到液相出口,这样在入口工况变化时,就能阻止气核和液膜从出口流出,保证了本发明具有较高的分离效率。
附图说明
20.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本
发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
21.图1是本发明实施例提供的双级管式气液分离器的结构示意图;图2是本发明实施例提供的双级管式气液分离器的剖视示意图;图3是图2中的局部放大图a;图4是本发明实施例提供的气相出口管的结构示意图;图5是本发明实施例提供的气相出口管的剖视示意图;图6是图5中的局部放大图b;图7是本发明实施例提供的气相出口管的剖视示意图。
22.图中1-一级水平分离段;11-一级出气管;12-入口混合段;13-分离段;14-液体出口段;15-倾斜入口段;16-引出外管;2-二级竖直分离段;21-出液管;22-二级出气管;23-外筒;24-内筒;3-旋流元件;4-气相出口管;41-分层管段;411-夹层腔;412-流液口;413-流气口;414-锥形外层管;415-锥形内层管;416-连接环;417-内层管壁;418-连通孔;419-外层管壁;4110-阻挡板;42-柱形管段;43-反向叶片。
具体实施方式
23.为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
24.本发明提供了一种适应入口含气率大范围变化的双级管式气液分离器,包括一级水平分离段1和二级竖直分离段2,其中,一级水平分离段1和二级竖直分离段2相连接,二级竖直分离段2的底端和顶端分别设置出液管21和二级出气管22;一级水平分离段1内设置依次设置有旋流元件3和气相出口管4,旋流元件3上旋流叶片个数一般为6或8,其出口与轴向方向呈30
°
~60
°
;气相出口管4与一级水平分离段1内的一级出气管11相连通;气相出口管4存在界面流层处理结构,气相出口管4与一级水平分离段1的内侧面之间存在液相通道。气液混合流体进入一级水平分离段1(一级水平分离段1入口可安装气液混合元件,气液混合流体经过气液混合元件流向旋流元件3),旋流元件3可使入口气液混合物的流动方向发生变化,并产生气液分离所需的强离心力,在离心力作用下,旋流元件3下游管的管壁面形成液膜,中心形成气核,实现气液第一次分离;形成的气核通过气相出口管4和一级出气管11排出气液分离器,形成的液膜(夹带一定气相)经过气相出口管4与一级水平分离段1之间的液相通道流向气相出口管4的下游管段,并切向流入二级竖直分离段2,夹带气相的液膜在二级竖直分离段2内依靠“重力和离心力”实现第二次气液分离。
25.针对目前管式气液分离器难以适应入口含气率大范围变化的不足,本发明基于分级、分层处理的思想理念,提升管式气液分离器对入口含气率大范围变化工况的适应能力。具体结构设计上,采用“水平段 竖直段”这种两级串联运行的分离方式,充分利用离心分离和重力沉降分离作用拓展对入口含气率的适应范围。
26.采用两种不同的原理产生气液分离所需的旋流强度,一种为叶片引导流体旋转产生强旋流,另一种为切向入口促使流体旋转产生弱旋流,结合这两种旋流强度各自的优势,
使其两者组合起来进行气液分离。这种旋流强度的组合,不仅能够克服单一离心气液分离设备对工况适应范围窄的缺点,还能解决同类离心分离设备二级串联后分离效果不佳的问题,可尽可能地适应入口含气率的大范围变化。通过一级水平分离段1,在强离心力作用下实现第一次气液分离,减小后续进入二级竖直分离段2的气量,气相往往是导致气液波动的主要因素,气量的减少降低了二级竖直分离段2分离过程的不稳定性。另一方面,一级水平分离段1分离出大量气相后,进入二级竖直分离段2的气相减少,有利于减小形成气核的尺寸,降低气核向下延伸对分离过程的不利影响,提高气液分离性能。
27.在本发明的水平段(一级水平分离段1),通过界面流层处理结构对不稳定的气液界面流层进行特殊处理,以保证入口含气率变化时具有较高的分离效率。
28.作为可选地实施方式,气相出口管4存在锥形外表面,沿远离旋流元件3的方向气相出口管4的锥形外表面直径逐渐增大,锥形外表面形成界面流层处理结构;锥形外表面的锥度范围为3
°
~5
°
。一般来说,入口含气率变化对管式气液分离器会产生两个影响,一是气核直径增加,导致液相出口含气量增加;二是气液界面波动,降低分离效果。本发明中,通过设置锥形外表面,流体的气液界面(气核的尾部)被限制在锥形外表面上;随着入口含气率的增加,气核直径增加,气核的尾部沿着锥面逐渐爬升,从而实现对入口含气率小范围变化的适应。当入口含气率很高,气相出口管4的锥形外表面难以约束气核时,气核越过气相出口管4进入二级竖直分离段2,由二级竖直分离段进一步地实现对入口含气率变化范围的适应。
29.作为可选地实施方式,气相出口管4包括分层管段41,分层管段41的管壁上形成夹层腔411,分层管段41底部区域的外侧面上设置与夹层腔411相连通的流液口412且流液口412位于分层管段41远离旋流元件3的一侧,分层管段41顶部区域的内侧面上设置与夹层腔411相连通的流气口413且流气口413位于分层管段41远离旋流元件3的一侧。当气液界面波动时,界面处的气液混合物在惯性作用下进入夹层腔411内。在该环形的夹层腔411内,在重力作用下气相和液相实现分层;其中气相逐渐聚集在环形空间的右侧上部,液相逐渐聚集在环形空间的右侧下部。在环形空间内实现分离的气相通过流气口413进入气相出口管4内部;在环形空间内实现分离的液相通过流液口412进入气体气相出口管4与一级水平分离段1之间的液相通道。分层管段41的设置,实现了对气液界面不稳定层的进一步分离。分层管段41的外表面可以是锥形,以形成锥形外表面;当然,分层管段41的外表面不限于锥形。
30.关于分层管段41的具体结构,说明如下:参见图3-图6,分层管段41包括锥形外层管414和锥形内层管415,锥形外层管414和锥形内层管415均为锥形管,锥形内层管415套设在锥形外层管414内且两者之间形成夹层腔411,锥形外层管414和锥形内层管415之间设置环形的连接环416且锥形外层管414和锥形内层管415通过连接环416相连接,参见图6,示意图了两个同心设置的锥形外层管414和锥形内层管415通过连接环416相连接,连接环416位于远离旋流元件3的一侧;参见图5,锥形外层管414的管壁上开设环形槽以形成夹层腔411,锥形外层管414的内层管壁417上分布若干连通孔418,锥形外层管414的外层管壁419上设置流液口412,参见图6,位于连接环416靠近二级竖直分离段2一侧的连通孔418形成流气口413。
31.参见图3-图6,当气液界面波动时,界面处的气液混合物在惯性作用下进入锥形外层管414和锥形内层管415形成的夹层腔411以及锥形外层管414上形成的夹层腔411内。夹
层腔411内,在重力作用下气相和液相实现分层;其中气相通过内层管壁417上的连通孔418逐渐聚集在环形空间的右侧上部,液相通过内层管壁417上的连通孔418逐渐聚集在环形空间的右侧下部。在环形空间内实现分离的气相通过流气口413进入气相出口管4内部;在环形空间内实现分离的液相通过流液口412进入气相出口管4外部的液相空间。
32.作为可选地实施方式,连通孔418为矩形孔,连通孔418在周向的长度大于在轴向的长度,连通孔418沿内层管壁417的周向分布,且沿内层管壁417的轴向方向分布多圈连通孔418。
33.作为可选地实施方式,参见图7,分层管段41还包阻挡板4110,阻挡板4110设置在锥形外层管414和锥形内层管415形成的夹层腔411以及锥形外层管414上形成的夹层腔411内,分层管段41沿轴线方向上的长度大于阻挡板4110的长度(比如,分层管段41沿轴线方向上的长度的二分之一大于阻挡板4110的长度),阻挡板4110位于分层管段41靠近其直径大的一侧且阻挡板4110沿分层管段41的轴线方向延伸,阻挡板4110用以沿分层管段41的周向方向分割两层夹层腔411;阻挡板4110为两个,两个阻挡板4110沿分层管段41的周向方向分布,参见图7,沿分层管段41的周向方向两个阻挡板4110之间形成的位于上方的空间对应流气口413,沿分层管段41的周向方向两个阻挡板4110之间形成的位于下方的空间对应流液口412。由于设置阻挡板4110,可以分开已经被分离的气相和液相,防止再次混合。
34.作为可选地实施方式,参见图4-图6,气相出口管4还包括柱形管段42,柱形管段42设置在分层管段41直径大的一侧,柱形管段42与分层管段41相连接,柱形管段42与一级出气管11相连接,柱形管段42上设置反向叶片43,反向叶片43与旋流元件3上的叶片旋向相反。气相出口管4前半部分为锥形环状结构(分层管段41),气相出口管4的后半部分(柱形管段42)外部设置了反向叶片43。反向叶片43的作用如下:反向叶片43能够把旋转流转化为无旋流动,保证流体进入二级竖直分离段2时,气液混合物处于比较理想的状态。
35.关于二级竖直分离段2,结构如下:参见图1和图2,二级竖直分离段2包括外筒23和内筒24,外筒23的底端和顶端分别设置出液管21和二级出气管22,内筒24设置在外筒23内且两者之间形成环形空间,一级水平分离段1插入外筒23与内筒24相连接。经一级水平分离段1分离后的液相通过液体出口管14进入二级竖直分离段2。二级竖直分离段2内,在离心和重力作用下,内筒24的中间形成气核,内壁附近形成液膜。由于内筒24和管式分离器外筒的直径相差较大,内筒24内气核在惯性作用下流出内筒24后,流通截面积的突然增加,迫使气核的流速降低,大大减小气核在管式气液分离器液层中的延伸长度。当入口含气率变化时可以把气核长度限制在内筒24的高度范围之内,这样无论入口含气率怎样变化,气核始终不能延伸到外筒23下部的液相出口21。同样受内筒24高度的限制,当入口含气率变化时,尽管液膜厚度和爬升高度会发生变化,但始终会终止在内筒的上部。这样,本发明就实现了对入口含气率大范围变化工况的适应性。在较优的实施例中,内筒24直径约为外筒23直径的0.6~0.8倍,内筒24的中心位于切向入口附近,内筒24的长度约为外筒23长度的1/3。当流体通过一级水平分离段1进入内筒24时,流体的入口方向与水平方向存在夹角,这就产生了气液分离所需的离心力。
36.一级水平分离段1包括主体段和倾斜段,倾斜段与主体段相连接,倾斜段与内筒24相切连接,倾斜段远离主体段的一侧向下倾斜。如图2所示,一级水平分离段1靠近二级竖直分离段2的一侧向下倾斜,与竖直方向的夹角在0~30
°
之间。一级水平分离段1在靠近内筒24
的一端设置缩颈。
37.关于一级水平分离段1,具体说明如下:一级水平分离段1包括入口混合段12、分离段13、液体出口段14以及倾斜入口段15,入口混合段12、分离段13、液体出口段14以及倾斜入口段15依次可拆卸连接,入口混合段12、分离段13、液体出口段14以及倾斜入口段15可通过法兰盘结构连接,倾斜入口段15与二级竖直分离段2相连接,旋流元件3设置在入口混合段12和分离段13,参见图2和图3,液体出口段14的侧面上突出有引出外管16,一级出气管11位于引出外管16内。
38.以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献