一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种硫化氢选择性氧化催化剂及其制备方法和应用

2022-06-02 15:55:09 来源:中国专利 TAG:


1.本发明涉及一种环境催化剂的制备技术及其应用领域,具体涉及硫化氢选择性氧化催化剂的制备方法及其在h2s选择性催化氧化方面的应用。


背景技术:

2.石油工业中汽油或柴油的脱硫过程、包含大量硫化氢(h2s)的天然气和沼气提炼过程、钢铁生产中金属的熔化等过程常常伴有相当含量的h2s产生。随着社会的不断发展进步,人们越来越注重环境污染的问题和资源回收利用的问题。claus工艺用于去除h2s和回收硫,是目前应用最普遍、规模最大的脱硫工艺。然而,受热力学平衡的限制,废气中仍存留了2%至5%的h2s。为了进一步去除残留的h2s,已经开发了各种额外的净化方法。其中,h2s选择性催化氧化(sco)在最近几十年中引起了广泛的研究兴趣。它可以直接、完全地将h2s转化为单质硫。然而,不良的副反应会产生so2,降低硫产率。sco主反应如式(1),副反应如(2)和(3)所示。
3.在反应中,so2可以通过h2s深度氧化或s进一步氧化形成,导致硫产率下降。因此,硫的产率很大程度上取决于催化剂的催化性能。因此,开发低成本、高活性、高选择性和优异耐久性的催化剂仍然是h2s选择性催化氧化急需解决的问题。
4.目前,硫化氢选择氧化催化剂体系中研究最多的是碳材料体系和金属氧化物体系,柱撑黏土体系虽然表现出较好的活性,但是稳定性有待考察。碳材料具有丰富的孔隙率,高的比表面积以及可以轻松进行修饰的酸性/碱性表面性质,并且可以充当催化剂或催化剂载体。碳材料本身作为催化剂,存在着适用空速低和选择性差的缺点;它作为载体,其活性取决于在表面高度分散的活性物质,但活性物质容易流失。已考虑金属氧化物作为该反应的催化剂,主要包括fe2o3、tio2、v2o5和ceo2等。氧化铁作为催化剂在h2s选择性氧化过程中被广泛研究。单纯的氧化铁催化剂活性不高,在过氧条件下有不错的转化率,然而过氧下的硫选择性很低,并且稳定性不高。相比之下,tio2高温下更具活性、选择性和稳定性,是作为h2s选择性氧化催化剂的有力竞争者,但是tio2存在着容易水中毒的缺点。钒是最具活性的物质,但是钒高毒性限制了它的应用。值得注意的是,最近稀土金属ce因其优异的氧化还原性能和高储氧能力而被广泛研究,但仍存在活性低、稳定性差的缺点因此,开发高效、高稳定性去除h2s的环保型催化剂仍然是一个挑战。
5.在过渡金属氧化物催化剂中,锰氧化物因其独特的理化性质(例如多态性和非化学计量组成)、环境友好和低成本而引起人们的注意。关于mn基材料在h2s选择性催化氧化中的应用已有报道。但是目前从文献报道结果看,mno2材料活性和稳定性还仍有待提高。单一的mno2材料低比表面积,低电子传输效率限制了它在h2s催化领域应用。
6.本发明利用铈改性二氧化锰,并探寻铈改性二氧化锰催化剂在h2s选择性催化氧化领域的应用,铈的改性能够改善织构性质,诱导氧空位的产生,增强其氧化还原性能和氧迁移率,从而提高了催化活性。


技术实现要素:

7.本发明的目的在于针对mno2材料还存在比表面积低和活性差的问题,提供一种铈改性二氧化锰催化剂的制备方法及其应用,解决现有技术中h2s选择性氧化过渡金属氧化物类催化剂活性差、稳定性差等问题,旨在制备出活性更好、稳定性优异的铈锰复合金属氧化物催化剂。
8.为实现上述目的,本发明通过下述技术方案实现:一种硫化氢选择性氧化催化剂的制备方法,包括以下步骤:a. 称取一定量配比的高锰酸钾和铈盐,加入到去离子水中,在室温下搅拌10min,制得锰铈混合盐水溶液;b. 将称量好的还原沉淀剂加入另一烧杯去离子水中,搅拌10min;然后将还原沉淀剂水溶液加入到锰铈混合盐水溶液中,在室温下继续搅拌10-60min;c. 然后将b步骤所得溶液转移到高压反应釜中进行水热处理4-24h,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤并在100℃烘12h;d. 将烘干的样品放入马弗炉,以3℃/min的升温速率升温至300℃后焙烧3h后得到硫化氢选择性氧化催化剂。
9.优选地,所述a步骤中所述的ce/mn的摩尔比为0.05~1,高锰酸钾和铈盐混合溶液的总摩尔浓度为0.1-0.5摩尔每升。
10.优选地,所述a步骤中的铈盐可以为硝酸亚铈、硫酸铈、醋酸铈和三氯化铈中的一种或多种。
11.优选地,所述b步骤中的还原沉淀剂为双氧水、乳酸、抗坏血酸中的至少一种;还原沉淀剂水溶液的摩尔浓度为0.1-0.5摩尔每升。
12.优选地,所述b步骤中的还原沉淀剂与高锰酸钾的摩尔比为0.1-1:1。
13.优选地,所述c步骤中的水热处理温度为100-180℃,反应时间4-24h。
14.一种上述制备方法制备的硫化氢选择性氧化催化剂的应用:用于选择性催化氧化h2s。
15.优选地,所述选择性催化氧化h2s反应的原料气中,o
2 浓度为h2s浓度的1/2。
16.优选地,所述用于选择性催化氧化的反应温度为90℃~240℃。
17.优选地,所述铈改性二氧化锰催化剂装填量为0.10g;h2s的浓度为5000ppm,o2的浓度为2500ppm,n2平衡气;原料气空速为18000ml
·
g-1
·
h-1
;原料气流速为30ml
·
min-1

18.本发明具有如下的优点和有益效果:1、本发明首次将铈锰复合金属氧化物(ce-mno2)应用在h2s选择性催化氧化领域,拓展了铈锰复合金属氧化物的应用范围;在18000 ml
·
g-1
·
h-1
的质量空速下,本发明中的催化剂可在150℃就能近百分百转化,并具有高选择性和良好的稳定性;2、本发明采用特定的还原沉淀剂,使合成的铈锰复合金属氧化物具有特殊的片状结构,且比表面积可以达到160~300 m2/g,现有的一般低于200 m2/g。大的比表面积有利于
反应物与催化剂活性位点的接触,从而有利于选择性催化氧化h2s的活性增强。
附图说明
19.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1为实施例1(a)和实施例3(b)制备的催化剂的sem图;图2为实施例1~4和对比例1和2制备的催化剂在h2s 选择性催化氧化反应中h2s转化率曲线图;图3为实施例1~4和对比例1和2制备的催化剂在h2s 选择性催化氧化反应中h2s选择性曲线图;图4为实施例1~4和对比例1和2制备的催化剂在h2s 选择性催化氧化反应中h2s收率曲线图;图5为实施例3制备的催化剂在h2s 选择性催化氧化反应中的稳定性曲线图。
具体实施方式
21.下面结合附图及实施例对本发明做进一步说明。
22.实施例1称取0.01mol的高锰酸钾和0.5mmol六水硝酸铈,加入到60ml的去离子水中,在室温下搅拌10min。然后将称量好的0.001mol抗坏血酸加入到10ml的去离子水中,在室温下搅拌10min。接着把还原沉淀剂水溶液加入到高锰酸钾和六水硝酸铈的混合溶液中,在室温下继续搅拌10min。然后将溶液转移到100ml高压反应釜中进行100℃水热处理24,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至300℃焙烧3h后得到铈改性二氧化锰催化剂,命名为5ce-mno2。
23.实施例2称取0.01mol的高锰酸钾和0.001mol六水硝酸铈,加入到60ml的去离子水中,在室温下搅拌10min。然后将称量好的0.001mol抗坏血酸加入到10ml的去离子水中,在室温下搅拌10min。接着把还原沉淀剂水溶液加入到高锰酸钾和六水硝酸铈的混合溶液中,在室温下继续搅拌10min。然后将溶液转移到100ml高压反应釜中进行100℃水热处理24,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至300℃焙烧3h后得到铈改性二氧化锰催化剂,命名为10ce-mno2。
24.实施例3称取0.01mol的高锰酸钾和0.005mol六水硝酸铈,加入到60ml的去离子水中,在室温下搅拌10min。然后将称量好的0.001mol抗坏血酸加入到10ml的去离子水中,在室温下搅拌10min。接着把还原沉淀剂水溶液加入到高锰酸钾和六水硝酸铈的混合溶液中,在室温下继续搅拌10min。然后将溶液转移到100ml高压反应釜中进行100℃水热处理24,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至300℃焙烧3h后得到铈改性二氧化锰催化剂,命名为50ce-mno2。
25.实施例4称取0.01mol的高锰酸钾和0.01mol六水硝酸铈,加入到60ml的去离子水中,在室温下搅拌10min。然后将称量好的0.001mol抗坏血酸加入到10ml的去离子水中,在室温下搅拌10min。接着把还原沉淀剂水溶液加入到高锰酸钾和六水硝酸铈的混合溶液中,在室温下继续搅拌10min。然后将溶液转移到100ml高压反应釜中进行100℃水热处理24,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至300℃焙烧3h后得到铈改性二氧化锰催化剂,命名为100ce-mno2。
26.对比例1称取0.01mol的高锰酸钾,加入到60ml的去离子水中,在室温下搅拌10min。然后将称量好的0.001mol抗坏血酸加入到10ml的去离子水中,在室温下搅拌10min。接着把还原沉淀剂水溶液加入到高锰酸钾溶液中,在室温下继续搅拌10min。然后将溶液转移到100ml高压反应釜中进行100℃水热处理24,反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至300℃焙烧3h后得到二氧化锰催化剂,命名为0ce-mno2。
27.对比例2将0.01mol ce(no3)3·
6h2o溶解在30ml去离子水中,搅拌30min。然后在搅拌下将8wt%的氨溶液逐渐滴入溶液中,以保持ph为10。进一步搅拌30分钟后,将溶液在高压釜中150℃下处理24小时。反应完成后高压釜自然冷却至室温,将沉淀用去离子水洗涤过滤,并在100℃烘12h。然后以3℃/min的升温速率升至500℃焙烧3h后得到二氧化铈催化剂,命名为ceo2。
28.图1为本发明实施例1和3制备的铈锰复合金属氧化物的sem图谱。如图1中(a)所示,低铈改性比下,5ce-mn催化剂由平均大小为 10.2nm 的纳米棒缠结而成,排列成大小不一的团聚体。如图1中(b)所示,实施列3制备的50ce-mn出现明显的片状结构,可能是在还原沉淀剂作用下高浓度铈离子地引入极大地破坏了二氧化锰的材料结构,所以呈现出与低铈改性比不同的形貌特征。
29.如表1所示,为本发明实施例1~4和对比例1制备的催化剂的织构性质。从表1可知,样品的比表面积按10ce-mno
2 》50ce-mno
2 》5ce-mno
2 》100ce-mno
2 》0ce-mno2的顺序减少,其中10ce-mno2的比表面积达到了250.6 m2/g,50ce-mno
2 和100ce-mno2试样的比表面积略有下降。样品比表面积、介孔孔容和介孔孔径都随着ce含量的增加表现出先增大后减少的规律,其中10ce-mno2的最大。值得注意的是,随着铈的增加微孔孔径慢慢减少,50ce-mno
2 和100ce-mno2微孔消失。50ce-mno2的介孔率高,比表面积大,有利于气态反应物进入活性位点,而且产物硫容易解吸,从而具有较高的h2s转化率和稳定性。
30.表1 本发明实施例1~4和对比例1制备的催化剂的织构性质
选择性催化氧化h2s性能测试:上述实施例和对比例制备的催化剂破碎并过筛成30~80目颗粒用于h2s的选择性催化氧化活性的评价。测试条件如下:催化剂装填量为0.10g,原料气由5000 ppm h2s、2500 ppm o2和平衡气氮气组成,原料气流速为30 ml
·
min-1
,原料气空速(ghsv)为18000ml
·
g-1
·
h-1
,反应温度为90℃~240℃,原料气为三组分气体(5000ppm,2500ppm,n2平衡气)。
31.各实施例和对比例制备的催化剂应用于h2s选择性催化氧化反应上,其h2s转化率、硫选择性以及硫的产率计算公式如下:图2为本发明实施例1~4和对比例1~2制备的催化剂在90~240℃的温度区间内选择性催化氧化 h2s的转化率曲线图。h2s 转化率随着反应温度从90℃升高到 240℃而不断增加。此外,当 ce/mn 摩尔比从 0%增加到 50% 时,h2s 转化率明显增加。50ce-mno
2 样品表现出最高的转化率,在150℃时 h2s就能达到100%转化。当ce/mn摩尔比达到100% 时,h2s 转化率反而下降,210℃才能达到100%的转化率。总的来说,ce的含量对h2s 转化率影响非常明显。值得注意的是,尽管不同ce含量改性样品的活性存在差异,但所有ce-mno2样品在 210℃下都能实现完全的 h2s 转化,在相同的反应条件下显示出比0ce-mno2和ceo2更高的 h2s 转化率。
32.图3为本发明实施例1~4和对比例1~2制备的催化剂在90~240℃的温度区间内选择性催化氧化 h2s的硫选择性曲线图。很明显,对于所有样品,硫的选择性在 150℃及以下保持恒定在 100%。随着温度的进一步升高,ceo2、0ce-mno2、5ce-mno2和10ce-mno2的选择性性下降,而50ce-mno2和100ce-mno2在180℃还维持100%并且整个温度范围选择性下降缓慢。总的来说,硫选择性的变化呈现出ceo
2 《 5ce-mno
2 《 10ce-mno
2 《 0ce-mno
2 《 50ce-mno
2 《 100ce-mno2的趋势。
33.图4为本发明实施例1~4和对比例1~2制备的催化剂在90~240℃的温度区间内选择
性催化氧化 h2s的硫收率曲线图。当温度低于150 ℃时,xce-mno
2 样品的硫产率变化趋势与 h2s 转化率相似,因为对硫的选择性下降较少。随着温度的进一步升高,所有样品的硫产率在较高温度下下降,因为硫选择性的慢慢下降。其中,50ce-mno2在150℃时可以实现100%的硫收率,高于目前大多数的催化剂。
34.图5为本发明实施例3制备的催化剂在反应温度180℃(硫露点温度)时的稳定性曲线图。具体而言,50ce-mno
2 催化剂在最初的 24 小时内表现出接近100% 的 h2s 转化率,然后 h2s 转化率略有下降,但在50h时h2s 转化率仍大于90%。另外,50ce-mno2在测试时间内选择性变化不大。
35.综上可知,由本发明制备的铈锰复合金属氧化物在h2s的选择性催化氧化反应中具有优异的性能,且稳定性高,具有巨大的应用潜力。
36.以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献