一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种利用固废制备网状多孔陶瓷材料的方法

2022-05-21 09:15:31 来源:中国专利 TAG:


1.本发明涉及多孔陶瓷材料制备技术领域,具体涉及一种利用固废制备网状多孔陶瓷材料的方法。


背景技术:

2.硅砂(二氧化硅)通过多步高温还原可制备高纯度多晶硅、冶金级硅(金属硅,metal silicate),其纯度约98%以上,将此多晶硅置于石英坩锅中加热熔融,以cz(czochralski method)法生长硅单晶棒,再经使用特殊的金属线锯为切割刀具的线切割机切割制成硅晶圆薄片,,并采用高硬度的碳化硅(sic)为研磨料;在制造半导体芯片及太阳能板的产业中,将硅晶棒切割成厚薄均一的硅晶圆片已属于标准流程的一环;整个生产过程中会产生一定量的废土渣,在厂内经过压滤或过滤处理后形成滤饼,再经由干燥方式可获得废硅晶土,这类废硅晶土除了高纯度外,主要以硅(si)、二氧化硅(sio2)及碳化硅(sic)等结晶相存在;中国是主要生产金属硅的产地,也具有一定硅晶生产技术,因此每年有大量的废硅晶土废弃物产生。
3.纸浆污泥源自造纸厂水处理最终生成的污泥脱水成饼,其含有大量有机物成份及3~10%的纤维质,过去这类污泥饼通常以掩埋处理,虽然含有高热质可作为生物质燃料,但因为含水量大(约70%),在燃料上应用不易;近年来,部份污泥作为再生有机肥应用,仍受限于微生物菌的附着、培养不易,应用性不明确。
4.多孔陶瓷是一种具有三维网络结构的陶瓷材料,它不仅具有传统陶瓷的耐高温、耐腐蚀等性能,而且因其独特的孔结构具有密度低、质量轻、气孔率高和导热系数小等特点。由于其独特的性能,多孔陶瓷已经广泛应用于建筑、生物医学、电化学等。
5.目前合成多孔陶瓷材料对防腐大部分是添加发泡剂在陶瓷原料中,在陶瓷烧制过程产生气泡生成多孔陶瓷,该法制造的多孔陶瓷孔洞属于大孔,且由于发泡材料在烧制过程可能造成炉体腐蚀,间接必须控制排气而提高了生产成本;除生产成本高外,受限于结构强度,多孔陶瓷材料多用于散热材料、绝热材料等,主要仍环绕陶瓷陶瓷耐热、耐酸碱、抗腐蚀等优点,缺少微孔洞的功能;近年来亦有利用成型模板制作网状多孔隙陶瓷材料,网状多孔隙陶瓷材料透过成型模板可生成微孔洞,但生产成本仍高,虽可应用在分子筛等高级材料,但功效性仍属专一性质。


技术实现要素:

6.针对上述问题,本发明提供一种以创新再利用技术解决大量废弃物的途径,具体是一种以废硅晶土作为陶瓷原料、纸浆污泥饼作为作为造孔模板制备网状多孔陶瓷材料的方法。
7.本发明的目的采用以下技术方案来实现:
8.一种利用固废制备网状多孔陶瓷材料的方法,包括以下步骤:
9.将废硅晶土与纸浆污泥按比混合,干燥后得到陶瓷坯体,对所述陶瓷坯体进行烧
结,生成所述网状多孔陶瓷材料;
10.其中,所述废硅晶土包含有硅、氧化硅和碳化硅;所述陶瓷坯体在烧结时周围覆盖有粉末层,所述粉末层为碳、硅、氧化硅、碳化硅中的至少一种;
11.本发明以废硅晶土为陶瓷原料,以纸浆污泥为成型模板;所述废硅晶土可包括:金属硅(metal silicate)纯度较低的硅土,半导体芯片制作过程中的破碎品或是制程废料,晶圆制作中的边角料、烟尘回收料或是厂内水处理过滤回收硅晶饼等,这类废硅晶土具有一定纯度的硅、氧化硅及碳化硅晶相提供陶瓷材料使用,可降低生产的原料成本,再者这类废硅晶土粉末不需研磨已具有陶瓷原料粉末的细度条件(200目以下);所述纸浆污泥可包括造纸业污水处理剩余底黑泥、剩余纸浆或是高纤维质废弃物,其含水率约在40~70wt.%间;
12.所述粉末层可使网状多孔陶瓷表面被覆(coating)吸附碳层(可能是石墨烯),增加多孔材料功能性;无所述粉末层则不易产生网状多孔结构(硅氧化成块状伴随放热烧失纤维再者纸浆污泥纤维无法碳化而烧掉),缺少吸附碳层,比表面积小;
13.所述混合是使用利于废硅晶土粉末浆料附着于纸浆污泥纤维质中的方式,可包括搅拌、混拌或是灌注,其中,搅拌或混拌的优选时间为3~24h;灌注则可以是使用注射筒灌注,间隔5~10min灌注一次,视纸浆污泥纤维吸收饱和后取出阴干8~12h。
14.优选的,所述废硅晶土的细度在200目以下。
15.优选的,所述废硅晶土与所述纸浆污泥的混合质量比例为1:(1-5)。
16.优选的,所述干燥采用冷冻干燥法。
17.本发明所述干燥的方式可以是烘箱热干燥或冷冻干燥,干燥时间优选为8~24h,以冷冻干燥产生的网状多孔隙陶瓷材料效果较好。
18.优选的,所述碳为活性炭、石墨、氧化石墨或还原石墨。
19.优选的,所述粉末层为氧化石墨、活性炭和废硅晶土,其质量比例为3:10:10。
20.优选的,所述烧结的温度在800-1500℃。
21.本发明的另一目的在于提供一种由前述制备方法制备得到的网状多孔陶瓷材料,所述网状多孔陶瓷材料可用作吸附材料、微生物培养基质或储能材料。
22.本发明的有益效果为:
23.(1)本发明以废弃物作为再利用原料制备得到具有162m2/g以上高比表面积、具有50nm的大孔与2-50nm的介孔分布的网状多孔陶瓷材料,同时降低生产成本,解决国内大量废硅晶土与纸浆污泥的再利用问题;具体的,利用纸浆污泥饼中的纤维质、有机质成份作为网状成型模板,利用纸浆污泥饼的纤维质与有机成份作为网状多孔陶瓷生成结构与附着基础,以废硅晶作为陶瓷原料,将废硅晶与纸浆污泥充分混合,在烧结过程中,废硅晶中的硅与氧化硅透过液相烧给驱动力可在纸浆污泥纤维质、有机质形成网状多孔隙陶瓷,碳化硅则作为发泡剂等作用合成多孔陶瓷。
24.(2)本发明除实现废弃物的再利用外,本发明还提供了一种创新的陶瓷烧结方法,通过在烧结过程进行改质,具体是利用包覆粉末层形成气氛烧结动力,在烧结过程中可在陶瓷表面涂覆一层活性碳、氧化石墨或石墨烯等材料,增加陶瓷表层吸附与活化作用,增加了网状多孔隙陶瓷材料的功效性。
附图说明
25.利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
26.图1是实施例1制得的网状多孔陶瓷样品的sem图;
27.图2是实施例1制得的网状多孔陶瓷样品不同放大倍数的sem图(a、b、c依次为放大100倍、1000倍、5000倍);
28.图3是实施例1或2的搅拌混合产物图;
29.图4是实施例1制得的网状多孔陶瓷样品的微孔分布图;
30.图5是实施例1制得的网状多孔陶瓷样品的ftir图;
31.图6是实施例1制得的网状多孔陶瓷样品随时间增加脱色亚甲基蓝变化曲线图。
具体实施方式
32.结合以下实施例对本发明作进一步描述。
33.实施例1
34.取6g废硅晶土(本实施例所使用的废硅晶土中硅、二氧化硅和碳化硅的质量比例为4:4:2,下同)与10g纸浆污泥饼混合研磨(因纸浆污泥饼含水结块状,其含水量在60wt.%左右,下同),混合后置入烧杯或pe瓶并加入适量去离子水搅拌混合24小时,得到黑色团状物,如图3所示,置入冰箱速冻24小时再进行真空冷冻干燥24小时,废硅晶土具有吸水效果,加入废硅晶土后搅拌成坯体,再进行干燥后可以形成分散孔洞,将干燥的坯体埋入氧化石墨(3g)、活性炭(10g)及废硅晶土(10g)粉末层中,置入坩锅,盖上坩锅盖,进行封闭烧结至1200℃后,生成网状多孔陶瓷。
35.所述粉末层设计以石墨、活性炭的比例高于废硅晶土,且所述废硅晶土会选择以碳化硅为主要成分,所述粉末层封闭在坩锅内,粉末层无压实不烧结,每次烧结损失不大,因而可重复使用,多次使用后补充。
36.实施例2
37.取6g废硅晶土与20g纸浆污泥饼混合研磨(因纸浆污泥饼含水结块状),混合后置入烧杯或pe瓶并加入适量去离子水搅拌混合24小时,得到黑色团状物,置入烘箱中烘干24小时,埋入氧化石墨(3g)、活性炭(10g)及废硅晶土(10g)粉末层中,置入坩锅,盖上坩锅盖,进行封闭烧结至1500℃后,生成网状多孔陶瓷。
38.实施例3
39.取10g废硅晶土加入适量去离子水形成陶瓷浆料,浆料粘度约300~500厘泊(cps),取30g纸浆污泥置入注射筒内后,将陶瓷浆料倒入进行注射,重复间隔5~10分钟,视纸浆纤维吸收饱和后,取出饱和吸附的纸浆污泥进行阴干8~12小时(环境温度27~32℃,湿度40~60%),阴干后,置入冰箱速冻24小时再进行真空冷冻干燥24小时,埋入氧化石墨(3g)、活性炭(10g)及废硅晶土(10g)粉末层中,置入坩锅,盖上坩锅盖,进行封闭烧结至1200℃后,生成网状多孔陶瓷。
40.实验例
41.1、扫描电子显微镜分析(sem)
42.将实施例1制得的陶瓷样品以电镜扫描拍摄其网状多孔微结构,表征结果如图1-2所示,表明本发明的配比与合成技术可制作网状多孔陶瓷材料。
43.2、比表面及微孔分析
44.将合成得到的网状多孔陶瓷磨成粉末后,利用气体吸附测定比表面积分析(bet),其中以multi-point bet量测实施例1与实施例2,测定结果如表1所示;
45.表1 multi-point bet比表面积测量结果
[0046][0047][0048]
将实施例1制得的样品利用bjh方法吸脱附孔径分布量测微孔分布,测定结果如图4,呈现为介孔(孔径在2-50nm)与大孔(孔径大于50nm)的双峰分布,具有大的比表面积。
[0049]
3、红外光谱分析
[0050]
对实施例1制得的网状多孔陶瓷样品以红外光谱对表面功效性的键结构进行分析,分析结果如图5所示,光谱中在900~500cm-1
之间有极强的si-c键伸缩振动峰,在1089cm-1
处是si-o键的伸缩振动峰,在3455cm-1
和1633cm-1
是样品中的吸附水所产生的吸收峰,另外在1450-1610cm-1
、2910cm-1
及2930cm-1
属于c-h拉伸(stretching)吸收峰,1620cm-1
则为-oh拉伸吸收峰,1630cm-1
为c-oh弯曲(bending)吸收峰,1717cm-1
为c=o拉伸吸收峰,这几个吸收峰可以作为所述网状多孔陶瓷表面涂覆(coating)活性碳与石墨烯等表层的实验依据。
[0051]
4、亚甲基蓝脱色实验(吸蓝量测试)
[0052]
取实施例1制得的网状多孔陶瓷样品0.2g左右置入40ml(浓度约0.04mol/l)亚甲基蓝溶液,进行恒温振荡吸蓝量测试后,以分光光度仪在665nm波长处测量其吸光度,测定结果如图6所示,以差减法量测实施例1所述样品吸附亚甲基蓝物质量,即吸蓝量,如表2所示,前30分钟吸蓝量高达8.97mmol/100g*min,之后5小时维持一定吸蓝量3.13mmol/100g*min,最终趋于稳定。
[0053]
表2实施例1样品以亚甲基蓝脱色实验的吸蓝值
[0054][0055]
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献