一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

工业烟气同步脱碳脱硝及余热回收利用的装置

2022-05-18 06:24:48 来源:中国专利 TAG:


1.本发明涉及工业烟气治理领域,特别涉及一种工业烟气同步脱碳脱硝及余热回收利用的装置。


背景技术:

2.目前,工业生产过程中,产生了大量的有害气体,除so2外,co和no
x
也严重的污染环境和影响着人们的正常生活,随着国家相关部门的重视和相应的超低排放政策的推行,工业生产面临着严峻的废气达标排放的考验。
3.鉴于工业废气中污染成分的多样性和多污染物同步脱除技术的进一步研发应用,同步脱碳脱硝正在受到各界广泛的关注和研究,其中利用催化剂进行低温脱硝工艺也愈加成熟,各地也在积极推进相关的研究和应用。但在同一塔体中,同步脱碳脱硝过程中,两者由于反应温度区间的不同引起的脱硝过程中脱硝床层温度的急剧升高、还原剂氨气的过度氧化等实际应用的问题,最终使得脱硝活性大幅下降,造成出口no
x
排放不达标,所以在同步脱碳脱硝过程中脱碳床层所产生的多余的热量进行充分回收利用以使脱硝床层高效脱硝的技术需求迫在眉睫。
4.鉴于上述原因,需要一种工业烟气同步脱碳脱硝及余热回收利用的装置。


技术实现要素:

5.本发明的目的在于提供一种工业烟气同步脱碳脱硝及余热回收利用的装置,该装置采用同步脱碳脱硝 余热回收利用的方式,最终实现反应床层的同步脱碳脱硝的正常运行,反应床层在各自的适宜运行温度下,达到各自脱除的高活性,同时脱碳床层的多余热量还能够实现多方面的应用。
6.为了实现上述目的,本发明提供如下技术方案:
7.一种工业烟气同步脱碳脱硝及余热回收利用的装置,所述装置包括:脱碳脱硝塔、喷氨设备和反应床层,其中,所述脱碳脱硝塔具有烟气进口和烟气出口,在所述脱碳脱硝塔内设置有多个所述反应床层,多个所述反应床层均位于所述烟气进口和所述烟气出口之间,所述脱碳脱硝塔的侧壁上设置有换热进口和第一换热出口,所述脱碳脱硝塔的侧壁上设置有氨水入口,所述喷氨设备设置在所述脱碳脱硝塔内,所述氨水入口与所述喷氨设备连通。
8.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,还包括有循环管路和储液箱,所述脱碳脱硝塔的塔壁设置有夹层,所述循环管路布设在所述夹层里,所述循环管路的两端分别通过所述换热进口和所述第一换热出口与所述储液箱连通,部分所述反应床层的底部设置有盘形管,所述盘形管与填装在所述反应床层里面的催化剂物料直接接触,所述脱碳脱硝塔内的所有所述盘形管通过所述循环管路依次连通,在所述脱碳脱硝塔内设有多个分流格栅管,所述分流格栅管的进口和出口均与所述循环管路连通;所述脱碳脱硝塔的侧壁上设置有第一气体检测口,与所述第一气体检测口连接有第一气体检
测装置,所述脱碳脱硝塔内设置有多个温度检测点,所述温度检测点与设置在所述脱碳脱硝塔外部的第一温度装置连接;优选地,所述夹层内填装有保温材料。
9.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,所述储液箱的侧壁上设置有液位计,所述储液箱的顶端设置有注液口和泄压口,所述储液箱的底端设置有排液阀,在所述储液箱与所述换热进口之间的管路上设置有输出泵。
10.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,所述喷氨设备包括氨水管路和雾化喷嘴,所述氨水管路用于将所述氨水入口与所述雾化喷嘴连通,所述第一换热出口设置在所有所述反应床层的下游。
11.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,所述烟气进口位于所述脱碳脱硝塔的顶部,与所述烟气进口连接有烟气管道,所述烟气出口位于所述脱碳脱硝塔的底部,所述烟气出口连通有排出管,烟气由所述烟气进口进入所述脱碳脱硝塔、由所述烟气出口通过所述排出管排出,在所述排出管上设置有第二温度装置和第二气体检测口,与所述第二气体检测口连接有第二气体检测装置。
12.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,所述碳指co,所述硝指no
x
,由所述烟气进口进入所述脱碳脱硝塔的烟气中co浓度为0~15000mg/nm3、no
x
浓度为0~1000mg/nm3,所述反应床层里面的催化剂物料均是成型催化剂。
13.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,如果所述烟气进口处烟气的温度为100℃~180℃,则所述反应床层包括脱碳床层和脱硝床层,由所述烟气进口至所述烟气出口依次设置有多个所述脱碳床层和多个所述脱硝床层,所述换热进口设置在首个所述脱碳床层的上游,所述喷氨设备设置在首个所述脱硝床层的上游,多个所述分流格栅管由上至下分别设置在多个所述脱碳床层的上游,在多个所述脱碳床层和多个所述脱硝床层之间的所述脱碳脱硝塔的侧壁上设置有第二换热出口,所述循环管路与所述第二换热出口均连通,所述第二换热出口连通有加热管和回流管,所述回流管与所述储液箱连通,所述加热管经过所述烟气管道,所述加热管用于加热进入所述烟气进口的烟气。
14.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,如果所述烟气进口处烟气的温度为180℃~240℃,则所述反应床层包括脱碳床层和脱硝床层,由所述烟气进口至所述烟气出口依次设置有多个所述脱硝床层和多个所述脱碳床层,所述换热进口设置在首个脱碳床层的上游,所述喷氨设备设置在首个所述脱硝床层的上游,多个所述分流格栅管由上至下分别设置在多个所述脱碳床层的上游。
15.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,如果所述烟气进口处烟气的温度为240℃~280℃,则所述反应床层包括脱硝脱碳床层,由所述烟气进口至所述烟气出口依次设置有多个所述脱硝脱碳床层,所述换热进口设置在首个所述脱硝脱碳床层的上游,所述喷氨设备设置在首个所述脱硝脱碳床层的上游,多个所述分流格栅管由上至下分别设置在多个所述脱硝脱碳床层的上游。
16.进一步地,在上述的工业烟气同步脱碳脱硝及余热回收利用的装置中,还包括双通阀,当所述脱碳脱硝塔内由所述烟气进口至所述烟气出口依次设置有多个所述脱碳床层和多个所述脱硝床层时,所述双通阀设置有三个,三个所述双通阀分别为第一阀门、第二阀门和第三阀门,所述第一阀门设置在所述脱硝床层内和所述脱碳床层之间的所述循环管路
上,所述第二阀门设置在所述加热管上,所述第三阀门设置所述回流管上,当由所述烟气进口进入的烟气需要加热与保温时,关闭所述第一阀门和所述第三阀门,开启所述第二阀门,循环液吸收所述脱碳床层的热量后能够通过所述加热管对所述烟气管道内的烟气进行加热,当所述脱硝床层的温度低于脱硝催化起活温度时,关闭所述第二阀门和所述第三阀门,开启所述第一阀门,循环液吸收所述脱碳床层的热量后能够对所述脱硝床层进行加热,当由所述烟气进口进入的烟气和所述脱硝床层的催化剂均不需要加热和保温时,关闭所述第一阀门和所述第二阀门,开启所述第三阀门,循环液吸收所述脱碳床层的热量后通过所述回流管流回所述储液箱。
17.分析可知,本发明公开一种工业烟气同步脱碳脱硝及余热回收利用的装置,利用该装置能够对工业烟气同步脱碳脱硝,并能够对脱碳过程中产生的余热进行回收利用。与现有技术相比,本发明的技术方案将脱碳和脱硝在脱碳脱硝塔中同时进行,可以大大节省分步处理的设备投资和减少占地面积,节约成本和运行费用。本发明通过对脱碳产生的多余热量进行有效回收,可有力的保证脱硝的正常运行,同时回收的热量还能够用于对由烟气进口进入的烟气的加热或保温,可以降低烟气加热设备的投资,使得进口烟气的温度保持稳定,从而有利于脱碳。本发明既可以同步脱碳脱硝,又能够根据实际情况将余热用作它用,起到双重收益效果。
附图说明
18.构成本技术的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
19.图1为本发明一实施例(先脱碳再脱硝)的结构示意图。
20.图2为本发明一实施例的盘形管的结构示意图。
21.图3为本发明一实施例的盘形管在反应床层内布置的结构示意图。
22.图4为本发明一实施例的分流格栅管的结构示意图。
23.图5为本发明一实施例(先脱硝再脱碳)的脱碳脱硝塔结构示意图。
24.图6为本发明一实施例(同时脱碳脱硝)的脱碳脱硝塔结构示意图。
25.附图标记说明:1脱碳脱硝塔;2反应床层;3脱碳床层;4脱硝床层;5脱硝脱碳床层;6烟气进口;7烟气出口;8换热进口;9第一换热出口;10氨水入口;11氨水管路;12雾化喷嘴;13循环管路;14储液箱;15盘形管;16分流格栅管;17第一气体检测口;18第一气体检测装置;19温度检测点;20第一温度装置;21液位计;22注液口;23泄压口;24排液阀;25输出泵;26排出管;27第二温度装置;28第二气体检测口;29第一阀门;30第二阀门;31第三阀门;32加热管;33回流管;34烟气管道;35第二换热出口。
具体实施方式
26.下面将参考附图并结合实施例来详细说明本发明。各个示例通过本发明的解释的方式提供而非限制本发明。实际上,本领域的技术人员将清楚,在不脱离本发明的范围或精神的情况下,可在本发明中进行修改和变型。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例,以产生又一个实施例。因此,所期望的是,本发明包含归入所附权利要求及其等同物的范围内的此类修改和变型。
27.在本发明的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。本发明中使用的术语“相连”、“连接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是直接相连,也可以通过中间部件间接相连;可以是有线电连接、无线电连接,也可以是无线通信信号连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
28.所附附图中示出了本发明的一个或多个示例。详细描述使用了数字和字母标记来指代附图中的特征。附图和描述中的相似或类似标记的已经用于指代本发明的相似或类似的部分。如本文所用的那样,用语“第一”、“第二”和“第三”等可互换地使用,以将一个构件与另一个区分开,且不旨在表示单独构件的位置或重要性。
29.如图1至图6所示,根据本发明的实施例,提供了一种工业烟气同步脱碳脱硝及余热回收利用的装置,该装置包括:脱碳脱硝塔1、喷氨设备和反应床层2,其中,本发明的实施例以脱碳脱硝塔1为圆柱形塔体结构为例进行介绍,脱碳脱硝塔1也可根据实际情况采用方形塔体等其他形状,脱碳脱硝塔1具有烟气进口6和烟气出口7,与烟气进口6连接有烟气管道34,工业烟气依次经由烟气管道34、烟气进口6后进入脱碳脱硝塔1,在脱碳脱硝塔1内设置有多个反应床层2,多个反应床层2均位于烟气进口6和烟气出口7之间,工业烟气由烟气进口6进入,流经多个反应床层2后由烟气出口7排出,工业烟气在流经多个反应床层2的过程中进行同步脱碳脱硝。在本发明的技术方案中,对用于脱碳、脱硝或同时脱碳脱硝的反应床层2的层数不做限定,反应床层2的层数可根据实际情况而定。脱碳脱硝塔1的侧壁上设置有换热进口8和第一换热出口9,脱碳脱硝塔1的侧壁上设置有氨水入口10,喷氨设备设置在脱碳脱硝塔1内,氨水入口10与喷氨设备连通,喷氨设备能够喷出氨水,氨水雾化后在催化剂物料的作用下还原烟气中的no
x
。在脱碳过程中,co氧化成co2释放多余热量并加热烟气,如果这部分热量不加以利用,会造成热量的浪费,且影响脱硝,被加热的烟气流入脱硝床层4,使脱硝床层4升温,当脱硝床层4的温度超出了脱硝催化剂的正常使用温度时会导致脱硝效果变差。本发明的技术方案即可以实现对脱硝床层4加热量的良好调控,保障脱硝床层4的脱硝反应正常进行,又可以实现对脱碳床层3多余热量的资源化利用。
30.进一步地,在本发明的技术方案中,碳指co,硝指no
x
,由烟气进口6进入脱碳脱硝塔1的烟气中co浓度为0~15000mg/nm3、no
x
浓度为0~1000mg/nm3,反应床层2里面的催化剂物料均是成型催化剂。脱碳脱硝塔1在脱碳的过程中会产生余热,余热利用量根据在实际脱碳反应过程中co催化氧化所释放的热量带来的脱碳床层3升温情况而定,其中co催化氧化使得烟气的温度升高量

t为:
[0031][0032]
根据co催化氧化过程,有:
[0033]
w=q
·c·f·
η
[0034]
f=a
·
ghsv k
[0035]
ghsv=q/v
[0036]
得出:
[0037]
其中:q:烟气流量;cp:烟气比热容;

t:脱碳床层co催化氧化前后烟气温度的变化量;f:co催化氧化转化率;a为脱碳脱硝塔内空速与co催化氧化转化率的关系常数,为负值;k为脱碳脱硝塔内空速与co催化氧化转化率的反应常数,为正值;ghsv:脱碳脱硝塔空速,ghsv∈[2000,20000];v:脱碳脱硝塔内脱碳催化剂装填量;w:脱碳脱硝塔内脱碳床层产热量;c:烟气中co浓度;η:单位流量条件下co转化为co2时的放热量。
[0038]
co(g) 1/2o2(g)=co2(g)

h=-283.0kj/mol
[0039]
以co浓度为15000mg/nm3、流量qm3/h、催化剂1m3、空速5000h-1
、烟气比热容约为1.2kj/m3·
℃、co完全催化氧化(转化率100%)为例,则根据1mol co氧化成co2可以放出283.0kj的热量,那么15000mg/nm3即0.54mol/nm3可以释放的热量为152.8kj/nm3,qm3/h流量条件下co转化为co2时的放热量为152.8*qkj/h,则通过上述公式进行计算得到脱碳床层3的co催化氧化前后烟气温度的变化约127.3℃,即烟气会由于co催化氧化实现理论升温约127.3℃,所以具有烟气余热利用价值。
[0040]
进一步地,该装置还包括有循环管路13和储液箱14,脱碳脱硝塔1的塔壁设置有夹层,循环管路13布设在夹层里,循环管路13需要具有一定的耐高温、耐腐蚀以及耐压等特性,循环管路13的管径大小可以根据实际应用情况而定,夹层内还填装有保温棉或者其它保温材料用于对脱碳脱硝塔1内部起到保温作用,循环管路13的两端分别通过换热进口8和第一换热出口9与储液箱14连通,部分反应床层2的底部设置有盘形管15,盘形管15的材质为耐腐蚀耐高温的不锈钢,盘形管15与填装在反应床层2里面的催化剂物料直接接触,脱碳脱硝塔1内的所有盘形管15通过循环管路13依次连通,循环管路13内的循环液在流经脱碳床层3或脱硝脱碳床层5的盘形管15时能够原位回收催化剂物料在脱碳过程中产生的多余热量,循环管路13内的循环液在流经脱硝床层4时能够对催化剂物料进行原位加热,保证脱硝效果。如图2和图3所示,一个盘形管15处于同一平面内,整体呈螺旋形,螺旋形的盘形管15留有足够的空隙,用以保证烟气正常流通,盘形管15的形状、尺寸和管径大小非固定,可依据实际脱碳脱硝塔1中反应床层2空间的大小以及换热的效果而定。在脱碳脱硝塔1内设有多个分流格栅管16,分流格栅管16的进口和出口均与循环管路13连通,分流格栅管16的材质为耐腐蚀耐高温的不锈钢,脱碳脱硝塔1的塔壁上设置有卡扣,分流格栅管16通过卡扣布置在脱碳床层3的上游,分流格栅管16与烟气直接接触,为了使烟气正常流通,分流格栅管16留有足够的空隙,循环管路13内的循环液在流经分流格栅管16时不仅做到原位回收脱碳床层3在脱碳过程中co的大量氧化而产生的多余热量,而且能对进口烟气进行良好分流,同时避免增大烟气流动阻力,使得烟气顺利流通,进而使得催化剂物料与烟气充分接触反应。本发明对分流格栅管16的形状不做限定,在本发明的一实施例中,如图4所示,分流格栅管16由若干横管和若干竖管组成,若干横管依次排列,若干竖管依次排列在若干横管的上方,若干横管依次连接后与依次连接的竖管连通。在本发明的其他实施例中,分流格栅管16还可以为其他形状。脱碳脱硝塔1的侧壁上设置有第一气体检测口17,与第一气体检测口17连接有第一气体检测装置18,第一气体检测口17用于检测脱碳脱硝塔1内烟气的co、co2、no
x
(no、no2)的浓度,用来确定在实际应用过程中,co的氧化情况以及no
x
的脱除情况,比如说相
比于进口烟气浓度值,如果脱碳脱硝塔1内或者烟气出口7的co2浓度较高以及no
x
浓度较低的话,则意味着co氧化程度比较高,脱碳效果比较好,no
x
脱除率比较高,脱硝效果比较好。脱碳脱硝塔1内设置有多个温度检测点19,温度检测点19与设置在脱碳脱硝塔1外部的第一温度装置20连接,脱碳和脱硝反应同时在脱碳脱硝塔1中进行,第一气体检测装置18和第一温度装置20能够对脱碳脱硝塔1内的温度以及烟气中co和no
x
的含量进行时时检测。根据第一温度装置20对脱碳脱硝塔1内各个温度检测点19的温度的检测结果决定循环液的流向,通过改变循环液的流向,可以实现对烟气管道34内的烟气进行加热与保温,或对脱硝床层4内催化剂物料进行加热的目的。
[0041]
进一步地,储液箱14为储存一定体积循环液的箱体,其中的循环液可以是水或者导热油等合适的物质成分,循环液通过在脱碳脱硝塔1和储液箱14之间循环,能够吸收脱碳脱硝塔1内催化剂物料在脱碳过程中产生的热量并进行回收利用。储液箱14的侧壁上设置有液位计21,液位计21用于监测储液箱14内的循环液的液位,储液箱14的顶端设置有注液口22和泄压口23,注液口22用于向储液箱14补充循环液,泄压口23用于释放储液箱14内多余的压力,以保证装置的正常运行,储液箱14的底端设置有排液阀24,在储液箱14与换热进口8之间的管路上设置有输出泵25,循环管路13通过换热进口8与输出泵25相连通,输出泵25用于将循环液顺利送入脱碳脱硝塔1内循环管路13中,并实现循环。在脱碳脱硝塔1内的循环管路13分别与分流格栅管16、盘形管15相连接,根据是否需要对烟气进口6进入的烟气给予加热与保温以及是否需要给予脱硝床层4的催化剂物料加热与保温,最终循环液分别有三个流向,一是流向与烟气进口6连接的烟气管道34,二是流向脱硝床层4,三是直接流回储液箱14,具体选择哪个流向可根据实际反应温度需求情况而定。循环液吸收热量后利用储液箱14对热量进行储存,储液箱14还可以连接其他需要供热的设备,并对其他需要供热的设备进行供热,用以实现对余热的回收利用。
[0042]
进一步地,喷氨设备包括氨水管路11和雾化喷嘴12,氨水管路11用于将氨水入口10与雾化喷嘴12连通,雾化喷嘴12能够喷出氨水并使氨水雾化,氨水雾化后与用于脱硝的催化剂物料充分接触,在催化剂物料的作用下还原烟气中的no
x
,第一换热出口9设置在所有反应床层2的下游,循环液在脱碳脱硝塔1内的流向为从上到下,这样可降低循环液流动的阻力。
[0043]
进一步地,烟气进口6位于脱碳脱硝塔1的顶部,烟气出口7位于脱碳脱硝塔1的底部,烟气出口7连通有排出管26,烟气由烟气进口6进入脱碳脱硝塔1、由烟气出口7通过排出管26排出,在排出管26上设置有第二温度装置27和第二气体检测口28,与第二气体检测口28连接有第二气体检测装置,第二温度装置27和第二气体检测装置能够对烟气出口7排出的烟气的温度以及co和no
x
的含量进行检测。
[0044]
进一步地,如果烟气进口6处烟气的温度为100℃~180℃,如图1所示,反应床层2包括脱碳床层3和脱硝床层4,烟气在脱碳脱硝塔1内脱碳脱硝的顺序为先脱碳再脱硝,由烟气进口6至烟气出口7依次设置有多个脱碳床层3和多个脱硝床层4,换热进口8设置在首个脱碳床层3的上游,喷氨设备的雾化喷嘴12设置在首个脱硝床层4的上游,即:喷氨设备的雾化喷嘴12设置在脱碳床层3和脱硝床层4两者之间空隙的中间位置,如此设置能够避免由雾化喷嘴12喷出的氨水被脱碳床层3的高温烟气过度氧化,还能使氨水雾化后与脱硝床层4里的催化剂物料充分接触,保证脱硝的效果。多个分流格栅管16由上至下分别设置在多个脱
碳床层3的上游,在本发明的一实施例中,分流格栅管16设置有两个,两个分流格栅管16分别设置在首个脱碳床层3和第二个脱碳床层3的上游,在多个脱碳床层3和多个脱硝床层4之间的脱碳脱硝塔1的侧壁上设置有第二换热出口35,循环管路13与第二换热出口35均连通,第二换热出口35连通有加热管32和回流管33,回流管33与储液箱14连通,加热管32经过烟气管道34,加热管32用于加热由烟气管道34进入烟气进口6的烟气。
[0045]
进一步地,如果烟气进口6处烟气的温度为180℃~240℃,则反应床层2包括脱碳床层3和脱硝床层4,烟气在脱碳脱硝塔1内脱碳脱硝的顺序为先脱硝再脱碳,由烟气进口6至烟气出口7依次设置有多个脱硝床层4和多个脱碳床层3,换热进口8设置在首个脱碳床层3的上游,喷氨设备的雾化喷嘴12设置在首个脱硝床层4的上游,多个分流格栅管16由上至下分别设置在多个脱碳床层3的上游。在一个实施例中,如图5所示,共设置有二个脱硝床层4和四个脱碳床层3。
[0046]
进一步地,如果烟气进口6处烟气的温度为240℃~280℃,则反应床层2包括脱硝脱碳床层5,烟气在脱碳脱硝塔1内同时脱碳脱硝,由烟气进口6至烟气出口7依次设置有多个脱硝脱碳床层5,换热进口8设置在首个脱硝脱碳床层5的上游,喷氨设备的雾化喷嘴12设置在首个脱硝脱碳床层5的上游,多个分流格栅管16由上至下分别设置在多个脱硝脱碳床层5的上游。在一个实施例中,如图6所示,共设置有六个脱硝脱碳床层5。
[0047]
进一步地,该装置还包括双通阀,双通阀为耐高温、耐腐蚀、操作灵活的控制阀门,双通阀用于控制循环管路13内循环液的流向,通过打开或者关闭双通阀最终控制流经脱碳床层3带有所回收下来的热量的循环液的流向。根据是否需要给予烟气进口6进入的烟气进行加热与保温以及是否需要给予脱硝床层4的催化剂物料加热与保温,循环液最终分别有三个流向,一是流向与进口烟气连接的烟气管道34,二是流向脱硝床层4,三是直接流回储液箱14,具体选择哪个流向可根据实际反应温度需求情况而定。
[0048]
对于进口烟温180℃~240℃先脱硝再脱碳和240℃~280℃同时脱碳脱硝则是在进口烟温100℃~180℃先脱碳再脱硝所利用的装置的基础上,进行调节喷氨设备、循环管路13、盘形管15以及分流格栅管16的上下位置即可。
[0049]
实施例1:
[0050]
在本实施例中,烟气进口6处烟气的温度为100℃~180℃,烟气在脱碳脱硝塔1内脱碳脱硝的顺序为先脱碳再脱硝,如图1所示,由烟气进口6至烟气出口7依次设置有两个脱碳床层3和四个脱硝床层4,脱碳床层3装填专门用于脱碳的催化剂,脱硝床层4装填专门用于脱硝的催化剂。分流格栅管16设置有两个,两个分流格栅管16分别设置在两个脱碳床层3的上游,喷氨设备的雾化喷嘴12设置在首个脱硝床层4的上游。温度检测点19设置有两个,一个温度检测点19设置在两个脱碳床层3之间、另一个温度检测点19设置在第二个脱硝床层4和第三个脱硝床层4之间,每个温度检测点19均连接有一个第一温度装置20。第一气体检测口17设置在首个脱硝床层4和第二个脱硝床层4之间。两个脱碳床层3、第三个脱硝床层4和第四个脱硝床层4的的底部均设置有盘形管15,脱碳床层3内的盘形管15以及分流格栅管16用于吸收在脱碳的过程中产生的余热,脱硝床层4内的盘形管15用于用于对脱硝床层4内催化剂物料进行加热,由于首个脱硝床层4和第二个脱硝床层4均靠近脱碳床层3,虽然可以利用脱碳床层3的盘形管15内的循环液回收大部分的热量,但也会加热部分烟气,使烟气升温,当烟气进入首个脱硝床层4和第二个脱硝床层4时,烟气温度足够高,烟气温度可以保
障脱硝反应的进行了,催化剂物料不需要供热,烟气经过第三个脱硝床层4和第四个脱硝床层4时,烟气温度下降,较低的烟气温度不利用脱硝,因此在首个脱硝床层4和第二个脱硝床层4内不需要设置盘形管15,而在第三个脱硝床层4和第四个脱硝床层4内需要设置盘形管15。
[0051]
在本实施例中,双通阀设置有三个,三个双通阀分别为第一阀门29、第二阀门30和第三阀门31,第一阀门29设置在首个脱硝床层4和第二个脱硝床层4之间的循环管路13上,第二阀门30设置在加热管32上,第三阀门31设置回流管33上。第一温度装置20与第一阀门29、第二阀门30和第三阀门31均连接,第一气体检测口17和第一温度装置20可传输反馈,第一温度装置20根据温度检测点19的监测值能够对第一阀门29、第二阀门30和第三阀门31进行自动控制,进而控制循环液在循环管路13内的流向。也可通过人工的方式根据第一气体检测口17和第二气体检测口28检测的气体浓度值对第一阀门29、第二阀门30和第三阀门31进行控制,进而控制循环液的流向。双通阀的数目和位置非固定,可以灵活变动,但最终循环液的三种流向需要保持不变。
[0052]
当由烟气进口6进入的烟气需要加热与保温时,关闭第一阀门29和第三阀门31,开启第二阀门30,循环液由储液箱14经输出泵25流出,依次经过换热进口8、循环管路13、分流格栅管16、脱碳床层3内的盘形管15和第二换热出口35后,通过加热管32流向烟气管道34,循环液吸收脱碳床层3的热量后能够通过加热管32对由烟气进口6进入的烟气进行加热。当脱硝床层4的温度低于脱硝催化起活温度时,关闭第二阀门30和第三阀门31,开启第一阀门29,循环液由储液箱14经输出泵25流出,依次经过换热进口8、循环管路13、分流格栅管16、脱碳床层3内的盘形管15、第三个脱硝床层4内的盘形管15、第四个脱硝床层4内的盘形管15和第二换热出口35后,流回储液箱14完成循环,循环液吸收脱碳床层3的热量后在流经脱硝床层4内的盘形管15时能够对相应的脱硝床层4进行加热。当由烟气进口6进入的烟气和脱硝床层4的催化剂均不需要加热和保温时,关闭第一阀门29和第二阀门30,开启第三阀门31,循环液由储液箱14经输出泵25流出,依次经过换热进口8、循环管路13、分流格栅管16、脱碳床层3内的盘形管15和第一换热出口9,然后通过回流管33流回储液箱14完成循环,循环液吸收脱碳床层3的热量后通过回流管33流回储液箱14进行存储。
[0053]
在本实施例中,当第一温度装置20监测到脱碳床层3的温度较高,且已经超出180℃时,第一温度装置20自动控制第一阀门29、第二阀门30和第三阀门31,使循环液流入脱碳脱硝塔1下方的脱硝床层4,进而使脱硝床层4的温度达到脱硝所需要的温度,以满足正常的脱硝。如果第一气体检测口17和第二气体检测口28检测到脱碳脱硝塔1出口的no
x
浓度较高,则意味着脱硝效率较低,可以通过人工的方式控制循环液的流向,使循环液流入脱硝床层4,提高脱硝床层4的温度,最终提高脱硝效率。
[0054]
在本实施例中,在一个脱碳脱硝塔1内既能实现脱硝也能实现脱碳,同时脱碳过程中所产生的热量还可以通过循环液的方式进行充分的利用,也就是说实现余热利用,将利用来的热量可以用来给进口烟气加热也可以给脱硝床层4供热,当两者都不需要这部分热量时,可以将回收的热量进行备用或者给其它供热设备来供热。
[0055]
实施例2:
[0056]
在本实施例中,如图5所示,烟气进口6处烟气的温度为180℃~240℃,烟气在脱碳脱硝塔1内脱碳脱硝的顺序为先脱硝再脱碳,由烟气进口6至烟气出口7依次设置有二个脱
硝床层4和四个脱碳床层3,脱碳床层3装填专门用于脱碳的催化剂,脱硝床层4装填专门用于脱硝的催化剂。分流格栅管16设置有两个,两个分流格栅管16分别设置在首个脱碳床层3的上游和第二个脱碳床层3的上游。喷氨设备的雾化喷嘴12设置在首个脱硝床层4的上游。温度检测点19设置有一个,该温度检测点19设置在第二个脱硝床层4与首个脱碳床层3之间,温度检测点19连接有第一温度装置20。首个脱碳床层3、第二个脱碳床层3和第三个脱碳床层3的底部均设置有盘形管15,脱碳床层3内的盘形管15以及分流格栅管16用于吸收在脱碳的过程中产生的余热。由于脱硝床层4靠近烟气进口6,烟气的温度能够保证脱硝床层4正常实现脱硝,不必为脱硝床层4的催化剂物料进行供热,因此在脱硝床层4内不设置盘形管15。第四个脱碳床层3以上的三个脱碳床层3氧化释放出来的热量,在循环液回收大部分热量后,剩余的热量可以给烟气进行一定程度的升温,当烟气到达第四个脱碳床层3时,温度足以进行正常的脱碳,而且第四个脱碳床层3处于脱碳脱硝塔1的最下面,考虑可能不会再释放出来大量的热量,所以对第四个脱碳床层3既没有进行余热利用也没有进行补充热量,因此第四个脱碳床层3不设置盘形管15。
[0057]
在本实施例中,循环液仅有一个流向,循环液由储液箱14经输出泵25流出,依次经过换热进口8、循环管路13、分流格栅管16、脱碳床层3内的盘形管15和第一换热出口9后,直接流回储液箱14,循环液吸收的脱碳床层3的热量被存储在储液箱14。第一温度装置20监测到脱硝床层4的温度以及第一气体检测口17和第二气体检测口28检测到no
x
的浓度值符合no
x
脱除效率时,脱碳床层3的热量由循环液收集后将回流到储液箱14备用或给其它需要供热的设备进行供热,无需再给进口烟气、脱硝床层4进行供热。
[0058]
实施例3:
[0059]
在本实施例中,如图6所示,烟气进口6处烟气的温度为240℃~280℃,烟气在脱碳脱硝塔1内脱碳脱硝的顺序为同时脱碳脱硝,由烟气进口6至烟气出口7依次设置有六个脱硝脱碳床层5,脱硝脱碳床层5内的脱碳催化剂和脱硝催化剂可以是同一种催化剂也可以是不同种类的催化剂,可视实际应用情况而定,最终的目的是同步实现脱碳和脱硝。分流格栅管16设置有两个,两个分流格栅管16分别设置在首个脱硝脱碳床层5的上游和第二个脱硝脱碳床层5的上游。喷氨设备设置在首个脱硝脱碳床层5的上游。温度检测点19设置有一个,该温度检测点19设置在首个脱硝脱碳床层5的上游,温度检测点19连接有第一温度装置20。首个脱硝脱碳床层5、第二个脱硝脱碳床层5和第三个脱硝脱碳床层5的底部均设置有盘形管15,脱硝脱碳床层5内的盘形管15以及分流格栅管16用于吸收在脱碳的过程中产生的余热。
[0060]
在本实施例中,循环液仅有一个流向,循环液由储液箱14经输出泵25流出,依次经过换热进口8、循环管路13、分流格栅管16、脱硝脱碳床层5内的盘形管15和第一换热出口9后,直接流回储液箱14,循环液吸收的脱硝脱碳床层5的热量被存储在储液箱14。由于脱硝脱碳床层5在脱碳时co大量氧化,脱硝脱碳床层5温度升高,使第一温度装置20所测的温度高于脱硝脱碳床层5脱硝所需温度,且第一气体检测口17和第二气体检测口28检测的塔体出口的no
x
浓度值较高,脱硝效率较低,应利用循环液降低脱硝脱碳床层5的温度,以满足同时脱碳脱硝的温度需求。
[0061]
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
[0062]
一种工业烟气同步脱碳脱硝及余热回收利用的装置,利用该装置能够对工业烟气
同步脱碳脱硝,并能够对脱碳过程中产生的余热进行回收利用。
[0063]
与现有技术相比,本发明的技术方案可以根据烟气的温度动态调整脱碳脱硝塔1内的布置,将脱碳和脱硝在脱碳脱硝塔1中同时进行,可以大大节省分步处理的设备投资和减少占地面积,节约成本和运行费用。本发明通过对脱碳产生的多余热量进行有效回收,实现了对余热的资源化利用,有力的保证脱硝的正常运行,同时回收的热量还能够用于对由烟气进口6进入的烟气的加热或保温,降低烟气加热设备的投资,使得进口烟气的温度保持稳定,从而有利于脱碳。本发明的技术方案既可以同步脱碳脱硝,又能够根据实际情况将余热用作它用,起到双重收益效果。
[0064]
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献