一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

堆叠状的单片的多结太阳能电池单元的制作方法

2022-03-09 04:02:53 来源:中国专利 TAG:


1.本发明涉及一种堆叠状的单片的多结太阳能电池单元。


背景技术:

2.例如从de102005000767a1中已知一种堆叠状的单片的多结太阳能电池单元。多结太阳能电池单元包括第一锗子电池单元以及至少两个其他子电池单元和至少一个半导体镜,其中,该半导体镜具有多个层,这些层具有至少彼此不同的折射率,以及在布置在其上方的一个或多个子电池单元的吸收范围的至少一部分中具有高的反射率,以及在布置在半导体镜下方的子电池单元的光谱吸收范围中对于辐射具有高的透射率。
3.从de102015016047a1中已知一种堆叠状的单片的iii-v族多结太阳能电池单元,其具有第一锗子电池单元和跟随的具有铟和磷的第二子电池单元。如果第一子电池单元和第二子电池单元具有不同的晶格常数,则多结太阳能电池单元包括布置在第一子电池单元与第二子电池单元之间的变质缓冲层。
4.从de102015016822a1中已知一种类似的多结太阳能电池单元。
5.从ep2251912a1中已知一种堆叠状的变质的多结太阳能电池单元,其中,布置在子电池单元之间的隧道二极管分别具有压缩预紧的第一层和拉伸预紧的第二层,从而每个隧道二极管在整体上以电压补偿的方式实施。


技术实现要素:

6.在此背景下,本发明的任务在于,说明一种扩展现有技术的设备。
7.该任务通过具有根据本发明的特征的堆叠状的单片的多结太阳能电池单元解决。本发明的有利构型是优选的实施方式。
8.作为本发明的主题,提供一种堆叠状的单片的多结太阳能电池单元,其以以下提及的顺序彼此相继地具有第一子电池单元、第二子电池单元、第三子电池单元和至少一个第四子电池单元,其中,带隙从第一子电池单元开始朝第四子电池单元的方向逐子电池单元地变得更大。
9.每个子电池单元具有n掺杂的发射极和p掺杂的基极,其中,第一子电池单元的发射极和基极分别具有锗或由锗组成,并且在第一子电池单元之后跟随的所有子电池单元分别具有元素周期表的第iii主族的至少一种元素和元素周期表的第v主族的至少一种元素。
10.在各两个子电池单元之间分别布置有一个具有p-n结的隧道二极管。
11.在第一子电池单元之后跟随的所有子电池单元都以彼此晶格匹配的方式实施。
12.在第一子电池单元与跟随的第二子电池单元之间布置有半导体镜,该半导体镜具有多个n掺杂的半导体层,这些半导体层具有交替地不同的折射率。
13.在第一子电池单元与半导体镜之间布置有n掺杂的变质缓冲层,其中,该变质缓冲层具有至少四个阶梯层(stufen-schicht)和至少一个过剩层
14.在n掺杂的半导体镜与第二子电池单元之间构造有第一隧道二极管,其中,该第一
隧道二极管构造为变质的。
15.变质的隧道二极管的n掺杂层由ingaas组成或包括ingaas。
16.在变质的隧道二极管的n掺杂层的iii-v族化合物中,in含量相对于iii族元素的含量为至少20%。优选地,n掺杂的层掺杂有碲。
17.应当注意,在变质的隧道二极管的情况下,n掺杂的层具有与位于其上方的第二子电池单元相比略微不同的晶格常数,和/或n掺杂的层具有与第一隧道二极管的p掺杂的层相比略微不同的晶格常数。优选地,晶格常数之间的差异大于0.1%或大于0.3%且小于10%或小于5%或小于3%或小于2%。
18.可以理解,在两个彼此相继的子电池单元之间分别布置有一个隧道二极管。
19.在一种扩展方案中,缓冲层中的至少两个缓冲层具有小于8
·
10
17
cm-3
的掺杂。
20.应当注意,堆叠状的多结太阳能电池单元的iii-v族子电池单元和其他层在ge子电池单元、例如ge衬底上依次外延生长。
21.还应注意,以术语“过剩层”表示变质缓冲层的如下层:该层具有比第一子电池单元的晶格常数更大的晶格常数并且具有比第二子电池单元或跟随的子电池单元的晶格常数更大的晶格常数。
22.在当前情况下,涉及一种正置生长(aufrecht gewachsene)的变质多结太阳能电池单元,即所谓的umm太阳能电池单元布置,而没有半导体键合或晶片键合。换句话说,多结电池单元的所有子电池单元依次以外延的方式在movpe设备中彼此上下地生长,并且不是由两个子堆叠接合而成。
23.第一子电池单元具有最小的带隙,并且在总共四个子电池单元的情况下第四子电池单元具有最大的带隙。在多于四个子电池单元的情况下,最上部的子电池单元相应地具有最大的带隙。
24.优选地,所有子电池单元构造为具有n在p上方的结构(n
‑ü
ber-p-struktur),因此在p-掺杂的基极上方具有n-掺杂的发射极。
25.与通常将半导体镜直接布置在子电池单元下方、例如直接布置在第二子电池单元下方不同,在当前情况下,半导体镜布置在第一隧道二极管下方。此外,与通常的p掺杂的实施方案不同,半导体镜是n掺杂的。
26.附加地,第一隧道二极管的以碲进行n掺杂的层具有ingaas,由此与例如n-inalp层相比,该层或隧道二极管可以可靠地承受其他子电池单元的后续进一步生长期间的热负荷。
27.令人惊讶的是,随着n掺杂的变质缓冲层的层中的掺杂降低到1
·
10
18
cm-3
的值以下,多结太阳能电池单元的效率增加。
28.目前可以这样认为:在1
·
10
18
cm-3
以上的范围中选择缓冲层的掺杂对于电导率是有利的。
29.此外,为了在给定的子电池单元厚度下提高子电池单元的辐射稳定性,半导体镜通常直接布置在相关子电池单元下方,即直接布置在子电池单元的p掺杂的基极下方,并且因此同样实施成p掺杂。
30.可以理解,半导体镜具有多个由薄层组成的周期,其中,这些薄层交替地具有低折射率和高折射率。
31.优选地,一个周期包括至少两个层或三个层,其中,半导体镜包括至少十个层,即至少5个周期。在一种扩展方案中,半导体镜包括至少10个或至少15个周期。
32.与此不同,将隧道二极管布置在半导体镜与其上方跟随的子电池单元(即第二子电池单元)之间,从而半导体镜是n掺杂的。
33.令人惊讶地显示出,在将隧道二极管布置在p掺杂的基极与半导体镜之间时,半导体镜在不变地良好的反射特性的情况下具有相对于位于其下方的子电池单元明显更高的透射,并且可以提高多结电池单元的效率。
34.由半导体镜的层的n掺杂结合低n掺杂的变质缓冲层组成的布置导致ge子电池单元中光电流的增加。
35.在一种扩展方案中,第一隧道二极管的以碲进行n掺杂的层以至少1
·
10
19
cm-3
或至少5
·
10
18
cm-3
掺杂。
36.在另一扩展方案中,第一隧道二极管的n掺杂的层具有小于1%的p。
37.在一种实施方式中,第一隧道二极管的n掺杂的层具有小于1%的al。
38.在另一实施方式中,第一隧道二极管的p掺杂的层至少包含元素in、ga和as。
39.优选地,第一隧道二极管的n掺杂的层的厚度以及p掺杂的层的厚度为至少10nm且至多100nm。
40.在一种扩展方案中,第一隧道二极管的p掺杂的层与n掺杂的部分相比拉紧(verspannt)至少0.5%。换句话说,p掺杂的层的晶格常数比n掺杂的层的晶格常数低至少
41.优选地,变质缓冲层具有至少三个半导体层或恰好四个层或恰好五个层或者恰好六个层或优选地七个层或恰好八个层或恰好九个层。可以理解,过剩层构造为变质缓冲层的一部分。
42.优选地,变形缓冲器具有逐渐地、例如以阶梯状或斜坡状的方式从第一晶格常数值变为第二晶格常数值的晶格常数。
43.在一种扩展方案中,变质缓冲层的缓冲层中的至少两个具有小于5
·
10
17
cm-3
或小于3
·
10
17
cm-3
或小于1
·
10
17
cm-3
或小于7
·
10
16
cm-3
或小于4
·
10
16
cm-3
的掺杂。
44.优选地,变质缓冲层的半导体层通常包括ingaas或由ingaas组成。在一种实施方式中,过剩层包括alingaas或由alingaas组成,以便增加用于位于其下方的ge电池单元的透明度。
45.应当注意,化学计量逐变质缓冲层的层地变化,以便逐层地改变晶格常数。优选地,铟的浓度逐层地在2%至5%之间的范围中变化。
46.在一种实施方式中,变质缓冲层的层在掺杂浓度的最大水平方面差异不超过两倍。
47.在一种扩展方案中,变质缓冲层包括第二过剩层。
48.在一种实施方式中,半导体镜的层具有小于1
·
10
19
cm-3
或小于5
·
10
18
cm-3
或小于3
·
10
18
cm-3
或小于1.5
·
10
18
cm-3
或小于8
·
10
17
cm-3
或小于5
·
10
17
cm-3
的掺杂。
49.在一种实施方式中,半导体镜和变质缓冲层的层具有硅或碲作为掺杂剂。
50.在一种扩展方案中,与半导体镜的具有较高折射率的层相比,半导体镜的具有较低折射率的层具有较低的掺杂和/或不同的掺杂剂。
51.在一种实施方式中,半导体镜的具有较低折射率的层的掺杂是所述半导体镜的具有较高折射率的层的掺杂的至多二分之一。
52.优选地,半导体镜的具有较低折射率的层由alinas组成或包括alinas。在一种实施方式中,半导体镜的具有较低折射率的层不具有镓。
53.在一种扩展方案中,半导体镜的层具有大于5
·
10
16
cm-3
或大于1
·
10
17
cm-3
或大于5
·
10
17
cm-3
的掺杂。
54.在一种实施方式中,缓冲层中的至少两个或所有缓冲层具有比半导体镜的层的掺杂更小的掺杂。
55.在另一扩展方案中,多结太阳能电池单元具有第五子电池单元。
56.在另一实施方式中,第二子电池单元具有ingaas或由ingaas组成。
57.替代地或补充地,第三子电池单元具有gaas或alingaas或ingaasp或由gaas或alingaas或ingaasp组成。
58.在一种实施方式中,第四子电池单元具有alingap或inalp或由alingap或inalp组成。
59.以术语“具有”表示,相应的子电池单元除了所提及的材料之外还具有其他材料,在实施方式中尤其具有第iii主族和/或第v主族的其他元素。与此不同,术语“由
……
组成”表示:太阳能电池单元基本上由所提及的材料组成,尤其不具有第iii主族和/或第v主族的其他元素。
60.可以理解,除了所提及的材料之外,每个太阳能电池单元附加地具有掺杂剂(例如碲或硅)并且可能还具有杂质。
61.在一种扩展方案中,多结太阳能电池单元具有第五子电池单元,其中,第五子电池单元布置在第四子电池单元与第三子电池单元之间并且具有ingap或由ingap组成。在一种扩展方案中,第五子电池单元构造在第四子电池单元上。
62.在一种扩展方案中,多结太阳能电池单元具有恰好四个子电池单元,其中,第四子电池单元具有2.0ev与1.8ev之间的带隙,第三个子电池单元具有1.4ev与1.6ev之间的带隙,第二子电池单元具有1ev与1.2ev之间的带隙,并且第一子电池单元具有0.6ev与0.7ev之间的带隙。
63.替代地,子电池单元中的一个或多个构造为异质子电池单元(hetero-teilzellen)。在此,发射极和基极具有不同的元素组成。然而,可以理解,发射极和基极的晶格常数在相应的子电池单元中是相同的。
附图说明
64.下面参照附图更详细地阐述本发明。在此,同类的部件标有相同的标记。所示出的实施方式是高度示意性的,即距离以及横向和垂直延伸不是按比例的,并且除非另有说明,否则彼此之间也没有可推导出的几何关系。在此示出:
65.图1示出堆叠状的单片的多结太阳能电池单元的第一实施方式的视图,
66.图2示出堆叠状的单片的多结太阳能电池单元的第一实施方式的另一视图,
67.图3示出第二实施方式的视图。
具体实施方式
68.图1的示图示出具有四个以堆叠状布置的单片子电池单元sc1、sc2、sc3和sc4的多结太阳能电池单元的示意性横截面。
69.每个子电池单元具有p掺杂的基极b1、b2、b3或b4和n掺杂的发射极e1、e2、e3或e4,其中,第一子电池单元sc1的发射极e1和基极b1具有锗或由锗组成,并且在第一子电池单元sc1之后跟随的子电池单元sc2、sc3和sc4的发射极e2、e3和e4以及基极b2、b3、b4分别具有第iii主族的至少一种元素和第v主族的至少一种元素。
70.其他子电池单元sc2、sc3和sc4中的每个要么构造为同质子电池单元要么构造为异质子电池单元。
71.子电池单元sc1、sc2、sc3和sc4具有从第一子电池单元sc1朝第四子电池单元sc4的方向逐子电池单元地增大的带隙。
72.第二子电池单元sc2、第三子电池单元sc3和第四子电池单元sc4以彼此晶格匹配的方式实施,而第一子电池单元sc1具有与其他子电池单元sc2、sc3和sc4的晶格常数不同的晶格常数。
73.为了补偿晶格常数方面的差异,堆叠状的多结太阳能电池单元附加地具有变质缓冲层mp,其具有沿着变质缓冲层mp的高度进行变化的晶格常数。
74.图2中的变质缓冲层mp布置在第一子电池单元sc1的上侧与半导体镜br的下侧之间并且是n掺杂的。变质缓冲层mp的晶格常数例如沿着该高度以斜坡状或阶梯状的方式从对应于第一子电池单元sc1的晶格常数的值变至对应于第二子电池单元sc2的晶格常数的值,并且具有过剩层,从而晶格常数逐层地首先增加并且然后再次减小到第二子电池单元sc2的晶格常数的值。
75.变质缓冲层mp是n掺杂的并且包括至少四个阶梯层和至少一个过剩层。缓冲层中的至少两个具有小于8
·
10
17
cm-3
的掺杂。
76.优选地,变质缓冲层的层彼此之间的掺杂方面的差异小于2倍。
77.在第一子电池单元sc1的上侧上布置有与第一子电池单元sc1的发射极e1邻接的半导体镜br。半导体镜br具有多个n掺杂的半导体层,这些半导体层具有交替地不同的折射率和分别最多1
·
10
19
cm-3
或最多5
·
10
18
cm-3
的掺杂剂浓度。
78.在半导体镜br的上侧上并且与第二子电池单元sc2的基极b2邻接地布置有第一隧道二极管td1,该第一隧道二极管具有与半导体镜邻接的n掺杂层n1和与第二子电池单元sc2邻接的p掺杂层p1。
79.换句话说,第一隧道二极管td1布置在n掺杂的缓冲层mp与第二子电池单元sc2之间。此外,第一隧道二极管td1具有以碲进行n掺杂的ingaas层n1。
80.第一隧道二极管td1的n掺杂的层n1布置在p掺杂的层p1下方。由此,n掺杂的层n1优选地以材料锁合的方式与半导体镜br的最上部的层连接。
81.借助隧道二极管的n掺杂的层n1的根据本发明的实施方案,与例如n-inalp层相比,n层n1或整个第一隧道二极管td1相对于通过子电池单元sc2、sc3和sc4的iii-v族层的进一步生长引起的热负荷变得非常稳定。
82.应当注意,与半导体镜br直接布置在子电池单元下方(例如直接布置在第二子电池单元sc2下方)的通常布置不同,在当前情况下,半导体镜br布置在第一隧道二极管td1下
方。
83.相应地,与通常的p掺杂的实施方案不同,半导体镜br构造为n掺杂的。
84.第二隧道二极管td2布置在第二子电池单元sc2与第三子电池单元sc3之间,并且第三隧道二极管td3布置在第三子电池单元sc3与第四子电池单元sc4之间,其中,每个隧道二极管td1、td2和td3分别具有pn结(即n掺杂层和p掺杂层)。
85.在图3的示图中示出另一实施方式。下面仅阐述与图1的图像的不同之处。
86.多结太阳能电池单元构造为变质的五结太阳能电池单元,其中,第二子电池单元sc2、第三子电池单元sc3、第四子电池单元sc4和第五子电池单元sc5以彼此晶格匹配的方式实施,其中,第一子电池单元sc1具有与跟随的子电池单元sc2、sc3、sc4和sc5的晶格常数不同的晶格常数。
87.晶格常数的差异借助布置在第一子电池单元sc1与半导体镜br之间的变质缓冲层mp来补偿。
88.在一种未示出的实施方式中,第五子电池单元布置在第四子电池单元与第三子电池单元之间并且具有ingap或由ingap组成。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献